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1. Basic equations.

We consider a binary electrolyte, i.e. a solution (not necessarily an aqueous
solution) containing one type of cations and one type of anions.
For fairly well diluted mixtures, the exchange of momentum between the
solvent and the dissolved components is described by the Stokes law

ρ
∂v

∂t
= −∇p + µ∆v + E

∑
i=±

qiρi
mi

+ ρg. (1)

Here ρ is the density of the medium, v is the velocity of the mixture, µ is the
viscosity, mi is the molecular weight of the ion, p is the pressure, ρ+ (ρ−) is the
mass density of the positive (negative) ions, qi is the ion charge, E is the
electrical field, g is the acceleration due to gravity, qi = zie is the ion charge, e
is an elementary charge, zi is the ion valency, and ci = ρi/mi is the
concentration, i.e. the number of ions in a unit volume.
The equilibrium ion distribution obeys the Nernst law

0 = −ρiqi
mi

dψ − kT

mi
dρi , E = −∇ψ, (2)

where ψ is the potential of the field E, k is the Boltzmann constant, and T is
the temperature.



Equality (2) means that the contacting phases , being in equilibrium, have
identical chemical potentials.

In the dynamic case, Eq. (2) is generalized to the force-balance equation as
follows

ρi
∂vi

∂t
= µi∆vi − αi∇p +

ρiqi
mi

E− kT

mi
∇ρi +

γiρi
mi

(v − vi ) + ρig, (3)

where the resistance coefficient γi is defined by the Stokes-Einstein-Sutherland
formula

γi =
kT

Di
. (4)

Here vi is the ion velocity, µi is the viscosity of the i-th ion component, and αi

is the bulk concentration (α1 + α2 ≤ 1). The fifth term in the right hand side
of (3) is a diffusion term, and Di is the coefficient of diffusion.
In what follows, we neglect the ion viscosities µi and the terms αi∇p since
both α1 and α2 are small.



The Poisson equation of charge conservation has the form

div D = 4π
∑
±

ρiqi
mi

, D = εf E, E = −∇ψ, (5)

where D is the electric induction vector and εf is the dielectric permittivity of
the electrolyte. As the mixture is assumed to be incompressible, the laws of
conservation of mass of the mixture and individual components are set as
follows :

div v = 0, ρ = const,
∂ρi
∂t

+ div (ρivi ) = 0. (6)

Inside the solid dielectric, the electrical field obeys the equations

div D = 0, D = εsE, E = −∇ψ,

where εs is the dielectric permittivity of the dielectric material.



2. One dimensional flows.

Our study is motivated by the electrolyte flow through a membrane of
thickness l when the inflow pressure p− (on the left) is greater than the
outflow pressure p+. It is the pressure gradient (p+ − p−)/l ≡ −α which
mainly controls the flow. It is also possible that the flow is due to the external
electrical field E = −(ψ+ − ψ−)/l ≡ −β. Commonly, an inflow density ρ−i of
the i-th ion is prescribed.
As a model problem, we consider a steady flow of the electrolyte in an infinite
horizontal layer of thickness L consisting of N horizontal thin slits an < z < bn
of the same thickness hl separated by layers bn < z < an+1 of a solid dielectric
of identical thickness hs . At the central points dn of the liquid domain
an < z < bn, the ion densities ρi acquire prescribed values ρ−i , which correspond
to imposing input concentrations in the case of a finite-thickness membrane.
Let Qf and Qs stand for fluid and solid domain

Qf = {x , z : −∞ < x < +∞, z ∈ Ωf }, Qs = {x , z : −∞ < x < +∞, z ∈ Ωs},

Ωf =
N−1⋃
n=0

{an < z < bn}, Ωs =
N−1⋃
n=0

{bn < z < an+1},

Ω = Ωf ∪ Ωs ≡ {0 < z < L},
an = n(hl + hs), bn = an + hl , dn = an + hl/2.



In the fluid domain Ωf , the solution of equations (1)-(6) is sought in the form

v = (v(z), 0, 0), vi = (vi (z), 0, 0), ρi = ρi (z), p = αx + P(z), ψ = βx + ϕ(z),

where α = const and β = const.
In this case, system (1)-(6) becomes

µvzz − α− β
∑
±

ciqi = 0, ci =
ρi
mi
, (7)

−Pz − ϕz

∑
±

ciqi − ρg = 0, (8)

−βciqi +
kTci
Di

(v − vi ) = 0, (9)

−ciqiϕz − kTciz − gcimi = 0, (10)

εf ϕzz = −4π
∑
±

ciqi . (11)

In the solid domain Ωs , the potential ϕ satisfies the equation

εsϕzz = 0. (12)



The conditions of continuity of the potential ϕ and induction D have the form

for z = an and z = bn : [ϕ] = [εϕz ] = 0, for z = dn : ci = c−i , (13)

where n = 1, ...,N − 1 and [ϕ]|z=z0 stands for the jump of the discontinuous
function ϕ at the discontinuity point z0 :

[ϕ]|z=z0 = lim
σ→0

(ϕ(z0 + σ)− ϕ(z0 − σ)).

The no-slip conditions can be written as

for z = an and z = bn : v = 0, where n = 0, ...,N. (14)

The external boundary conditions of the potential ϕ are assumed to be given

ϕ|z=0 = ζ0, ϕ|z=L = ζL. (15)



Thus, one-dimensional flows are governed by equations (7)-(12) and conditions
(13)-(15). Let us derive some consequences of the above formulation.
We introduce a discontinuous function of dielectric permittivity

ε =

{
εl , z ∈ Ωf ,

εs , z ∈ Ωs ,

which is extended periodically for all values of z .
To eliminate the concentrations ci , we write Eq. (10) in the form

d

dz
(qiϕ+ kT ln ci + migz) = 0.

Integrating this equation from dn to z ∈ (an, bn), we obtain

ci = c−i exp [
qi
kT

(ϕ(dn)− ϕ(z)) +
gmi

kT
(dn − z)]. (16)

Hence, the potential ϕ solves in each liquid domain (an, bn) the
Poisson-Boltzmann equation

εf ϕzz = −4π
∑
±

c−i qi exp [
qi
kT

(ϕ(dn)− ϕ(z)) +
gmi

kT
(dn − z)]. (17)



We introduce the function [z]e which takes the value of the integer part of the
number z . Then, for an < z < an+1, the functions

Ha(z) = h[
z

h
]e , Hd(z) =

hl
2

+ h[
z

h
]e , Hb(z) = hl + h[

z

h
]e , h ≡ hl + hs ,

(18)
take the constant values an, dn, and bn.

Let χ be the characteristic function of the liquid domain Ωf . Thus to define ϕ
on the whole interval 0 < z < L, we have to solve the equation

(εϕz)z = −4πχ(z)
∑
±

c−i qi exp [
qi
kT

(ϕ(Hd(z))− ϕ(z)) +
gmi

kT
(Hd(z)− z)],

with the conditions (13) and (15). Note that the function ξd = Hd(z)− z is
periodic, and ξd = hl/2− z on the periodicity interval 0 < z < h.



3. Transition to dimensionless quantities and comparison of parameters.

We look for an asymptotic solution of problem (7)-(15) assuming that the ratio

h

L
=

1

N
= δ

is small (N is a natural number). Within the framework of the homogenization
method, the entire interval Ω = {0 < z < L} is fixed and δ varies in (0, 1). In
this case, we obtain

h(δ) = δL, hf = δh̄f , hs = δh̄s , h̄f + h̄s = L, Φ := h̄f /L,

where Φ is the porosity.
In addition to the slow variable z ∈ Ω, we introduce the fast variable
y = z/(δL). For small values of δ, the periodic functions ε(z) and χ(z)
oscillate strongly and they can be represented as functions of the fast variable

ε(z) = ε̃(
z

δL
), χ(z) = χ̃(

z

δL
),

where

ε̃(y) =

{
εf , 0 < y < Φ,

εs , Φ < y < 1,
and χ̃(y) =

{
1, 0 < y < Φ,

0, Φ < y < 1,

are periodic functions with a period equal to unity.



The functions

ξ̃a(y) = −Ly , ξ̃d(y) = L(Φ/2− y), ξ̃b(y) = L(Φ− y), 0 < y < 1,

are extended periodically. The functions Ha(z), Hd(z), and Hb(z) defined in
(18) can be written as

Ha(z) = z + δξ̃a(
z

δL
), Hd(z) = z + δξ̃d(

z

δL
), Hb(z) = z + δξ̃b(

z

δL
).

With the above notations, the function ϕ(z) solves on the interval 0 < z < L
the problem

(ε̃(
z

δL
)ϕz)z = f (ϕ), (19)

f = −4πχ̃(
z

δL
)
∑
±

c−i qi exp
( qi
kT
{ϕ(z + δξ̃d(

z

δL
))− ϕ(z)}+

δgmi

kT
ξ̃d(

z

δL
)
)
,

with the boundary conditions (15).



As the fluid domain Ωf depends on δ, we write Ωδf instead of Ωf and Ωδs instead
of Ωs . It follows from (7) and (11) that the bulk velocity satisfies the equation

z ∈ Ωδf : µvzz +
βεf
4π

ϕzz = α; z ∈ ∂Ωδf : v = 0. (20)

With ci given by (16), the ion velocity solves the problem

z ∈ Ωδf : −βciqi +
kTci
Di

(v − vi ) = 0. (21)

Let us perform scaling, using the bar-sign f̄ for a reference value of the variable
f and the prime-sign f ′ for a dimensionless value of f , i.e. f = f̄ f ′. We use the
following notations :

z = Lz ′, x = Lx ′, ci = c̄c ′i , qi = q̄q′i , v = v̄ v ′, vi = v̄ v ′i , Di = D̄D ′i ,

α = p̄α′/L ≡ p̄p′x′/L, β = ϕ̄β′/L ≡ ϕ̄ψ′x′/L, Hd(z) = LH ′d(z ′).

The quantity

ld =
(εlkT

2c̄ q̄2

)1/2
(22)

has a dimension of length and is known as the Debye length.



In dimensionless variables, equations (7)-(11) in the fluid domain take the form(µv̄/L2

p̄/L

)
4
v ′z′z′ +

β′

π

( l2d
L2

)
2

( q̄ϕ̄
kT

)
1

( q̄ϕ̄c̄
p̄

)
3
ϕ′z′z′ = α′,

−β′q′iD ′i
( q̄ϕ̄
kT

)
1

+
( v̄L
D̄

)
5
(v ′ − v ′i ) = 0,( l2d

L2

)
2

( q̄ϕ̄
kT

)
1
ϕ′z′z′ =

−2π
∑
±

c ′i q
′
i exp

(
q′i

( q̄ϕ̄
kT

)
1
{ϕ′(H ′d(z ′))− ϕ′(z ′)}+

(gmiL

kT

)
7
(H ′d(z ′)− z ′)

)
.

In the solid domain, equation (12) reads (εs)6ϕ
′
z′z′ = 0.

Assuming that the dimensionless quantities (·)i satisfy the equalities

(·)i = δni , i = 1, ..., 6, (·)7 = 0,

we obtain a hierarchy of problems to study. In this study, we consider only the
case when all the powers ni are equal to zero, i.e. (·)i = O(1).



The equality (·)1 = O(1) means that the electroosmotic forces and the thermal
forces are of the same order. Note that the relation (·)1 = O(1) holds, for
example, for an aqueous solution of a symmetric electrolyte (where z+ = z−
and c−+ = c−− ) at T = 298K , z = 1, and value of the ζ-potential equal to 25
mV . when the parameter (·)1 is not small, the Debye-Hückel linearization of
the Poisson-Boltzmann equation is inapplicable.
For (·)1 = O(1), the Debye length ld can be large, as compared with the
electrical double layer ; in this case the double layers may overlap. Indeed, it is
commonly assumed that ld = 9.6/(z

√
c̄). For the above-mentioned electrolyte

with a molar concentration of counter-ions c̄ = 0, 01 mmole, the Debye length
is ld = 100[nm], whereas the characteristic thickness of the electrical double
layer is only several nanometers, and the pore size in nanocapillary membranes
is 15 [nm]. For such cases, the assumption (·)2 = O(1) is fairly natural. The
hypothesis (·)3 = O(1) means that the horizontal pressure gradient and the
horizontal electric field are commensurable in the order of magnitude.
The relation (·)4 = O(1) is satisfied if the viscous forces are comparable with
the pressure gradient applied. As the dimensionless parameter (·)5 is the Peclet
number (Pe), the equality Pe = O(1) means that convection and diffusion are
quantities of the same order. If the electric concentration c̄ in water is small,
then the hypothesis (·)6 = O(1), i.e. εs/εf = O(1), is valid. As the mass mi

can be neglected, in what follows we assume that (·)7 = 0.



The Debye-Hückel approach to the analysis of the Poisson-Boltzmann equation
(17) in the single layer z > 0 with the boundary conditions ϕ→ 0 and ϕz → 0
as z →∞ and ϕ|z=0 = ζ0 implies the following. For a symmetric electrolyte,
the linearized equation (17) in the SI system of units where 4π is substituted by
1) acquires the form l2dϕzz = −ϕ, because the nonlocal term ϕ(d) disappears
as d →∞. In this case, the solution is given by the formula ϕ = ζ0e

−z/ld ,
which implies that the Debye length is determined by Eq. (22).

4. Asymptotic analysis of the Poisson-Boltzmann equation.

We pass back to dimensional variables. Using the method of two-scale
expansions, we seek for the solution of Eq. (19) in the form of a series

ϕ(z) =
∞∑
0

δkϕk(z , y)|y=z/(δL), (23)

where the functions ϕk(z , y) for each z ∈ Ω are periodic in the y direction with
a period equal to unity. We introduce the flux

F (z) = ε̃(
z

δL
)
d

dz
ϕ(z),

d

dz
F = f (ϕ), (24)

and present it as a series

F (z) =
∞∑
0

δkF k(z , y)|y=z/(δL), (25)



where F k(z , y) are functions periodic in the y direction for all z ∈ Ω.
Using the formula

d

dz
ϕk(z ,

z

δL
) = ϕk

z (z ,
z

δL
) +

1

δL
ϕk

y (z ,
z

δL
)

and substituting series (23) and (25) into the first equality of (24), we obtain

∞∑
−1

δk(·)k = 0.

Thus, for all k = −1, 0, 1, · · · , we have (·)k = 0. In particular, three first
equalities can be written as

ϕ0
y (z , y) = 0, F 0(z , y) = ε̃(y)(ϕ0

y (z , y) + ϕ1
y (z , y)/L), (26)

F 1(z , y) = ε̃(y)(ϕ1
y (z , y) + ϕ2

y (z , y)/L). (27)

Substituting series (23) and (25) into the second equality of (24) and retaining
only the powers δ−1 and δ0, we obtain

∂

∂y

(
ε̃(y)(ϕ0

y (z , y) + ϕ1
y (z , y)/L)

)
, (28)



∂

∂z

(
ε̃(y)(ϕ0

z(z , y) + ϕ1
y (z , y)/L)

)
+

1

L

∂

∂y

(
ε̃(y)(ϕ1

z(z , y) + ϕ2
y (z , y)/L)

)
= −4πχ(y)

∑
±

c−i qi . (29)

Equations (28) and (29) allow the functions ϕ0(z , y), ϕ1(z , y), and ϕ2(z , y) to
be uniquely determined. Indeed, it follows from the first relation of system (26)
that the function ϕ0(z , y) is independent of the variable y . For a given function
ϕ0(z), Eq. (28) for ϕ1(z , y) can be solved by the method of separation of
variables under the assumption that there exists a certain function w1(y), such
that ϕ1(z , y) = ϕ0(z)w1(y). Substituting this presentation into Eq. (28), we
obtain w1(y), which is a periodic solution of the problem

d

dy

(
ε̃(y)

(
1 +

1

L

dw1

dy

))
= 0,

∫ 1

0

w1(y) dy = 0. (30)



Obviously, w1 is found uniquely, and

ε̃(y)

(
1 +

1

L

dw1

dy

)
= εh(Φ) = const, εh(Φ) =

1

Φ/εf + (1− Φ)/εs
. (31)

Integrating equality (29) with respect to y , we obtain an equation for ϕ0(z) :

εh(Φ)ϕ0
zz = −4πΦ

∑
±

c−i qi , ϕ0(0) = ζ0, ϕ0(L) = ζL. (32)

For known functions ϕ0(z) and ϕ1(z , y) = ϕ0
z(z)w1(y), Eq. (29) for ϕ2(z , y)

can also be solved by the method of separation of variables under the
assumption that there exists a function w2(y), such that
ϕ2(z , y) = ϕ0

zz(z)w2(y). Substituting this presentation into Eq. (29), we obtain
w2(y), which is a periodic solution of the equation

εhϕ
0
zz +

1

L
ϕzz

d

dy

(
ε̃(y)

(
w1(y) +

1

L
w2(y)

))
= −4πχ(y)

∑
±

c−i qi . (33)

For
∫ 1

0
w2(y) dy = 0, Eq. (33) has a unique solution. Note that the

presentation for the macroscopic parameter εh coincides with the known
Maxwell formula for a mixture of two dielectrics.



5. Asymptotic analysis of velocity.

Integrating Eq. (20), we obtain the following formula for velocity in each fluid
domain an < z < bn :

µv(z) =
1

bn − an

∫ z

an

dr

∫ bn

an

ds

∫ r

s

G(λ) dλ, G = α− βεf

4π
ϕzz . (34)

We extend the function v by zero to the solid domain Ωδs , using v̂(z) to denote
this extension. It follows from Eq. (34) that, for any z ∈ Ω,

µv̂(z) =
χ̃( z

δL
)

δh∗l

z∫
z+δξ̃a(

z
δL

)

dr

z+δξ̃b(
z
δL

)∫
z+δξ̃a(

z
δL

)

ds

r∫
s

G(λ)dλ, G = α− βεf
4π

ϕzz . (35)

Having in mind that ϕ(z) is given by the expansion (23), we seek for v̂(z) in
the form

v̂(z) =
∞∑
2

δkv k−2(z , y)|y=z/(δL), (36)

where the functions v k(z , y) are periodic in y and v k(z , y) = 0, for 0 < y < Φ.



After simple calculations we have

z∫
z+δξ̃a(

z
δL

)

dr

z+δξ̃b(
z
δL

)∫
z+δξ̃a(

z
δL

)

ds

r∫
s

αdλ =
δ3αh̄l

2
ξ̃a(

z

δL
)ξ̃b(

z

δL
).

Using the properties of the functions ϕ0
z(z , y), ϕ1

z(z , y), and ϕ2
z(z , y) we obtain

ϕ(λ) = ϕ0(z) + δϕ0
z(z)w1(y) + δ2ϕ0

zz(z)w2(y) + · · · , z = λ, y =
λ

δL
,

ϕ′′(λ) =
{ϕ0

z(z)w ′′1 (y)

δL2
+ ϕ0

zz

(
1 +

2w ′1(y)

L
+

w ′′2 (y)

L2

)}
|z=λ,y= λ

δL
+ δ(·). (37)

Due to the multiplier χ̃ in the right hand side of formula (35), we can assume
that z ∈ (Ha(z),Hb(z)) in this formula. In this case, the variables r and s also
belong to this interval. Az λ is between r and s, hence,

0 <
λ

δL
− [

λ

δL
]e < Φ,

the derivatives w ′′1 (y) and w ′′2 (y) in (37) are well defined.



Moreover, it follows from (29) and (31) that, for 0 < y < Φ, the functions
w1(y) and w2(y) satisfy the equalities

w ′′1 (y) = 0,

and

ϕ0
zzεf
(

1 +
2

L
w ′1(y) +

1

L2
w ′′2 (y)

)
= −4π

∑
±

c−i qi .

Thus

ϕ′′(λ) = −4π

εl

∑
±

c−i qi + δ(·). (38)

Substituting formulas (36) and (38) into (35) and considering only the power
δ2, we can show that v 0(z , y) does not depend on the variable z and has the
form

µv 0(y) =
1

2
χ̃(y)ξ̃a(y)ξ̃b(y)(α + β

∑
±

c−i qi ). (39)

Integrating equality (39) over the periodicity cell, we obtain a macroscopic
equation for velocity

V ≡
1∫

0

v 0(y)dy = −λ11α− λ12β, (40)



where the hydrodynamic and electrochemical mobilities are given by the
formulas

λ11 =
L2Φ3

12µ
, λ12 =

L2Φ3

12µ

∑
±

c−i qi .

6. Asymptotic analysis of ion velocity.

As Pe = O(1) and v = O(δ2), we assume that Di = δ2D̃i . Let v̂i denote the
zero extension of vi to Ωδs . Then it follows from (21) that

v̂i (z) = v̂(z)− βqiδ
2D̃iχ(z)

kT
.

If v̂i admits the representation formula

v̂i (z) =
∞∑
2

δkv k−2
i (z , y)|y=z/(δL),

we obtain

v 0
i (z , y) = v 0(y)− βqi D̃iχ(y)

kT
. (41)



Let us consider the total electric current

j =
∑
±

ciqi v̂i , j(z) =
∞∑
0

δk jk(z , y)|y=z/(δL).

As it follows from (41) that

j0(z , y) =
∑
±

c−i qiv
0
i (y), (42)

the macroscopic electric current is

J ≡
1∫

0

j0(y)dy = −λ21α− λ22β, (43)

where

λ21 =
L2Φ3

12µ

∑
±

c−i qi , λ22 =
L2Φ3

12µ

(∑
±

c−i qi
)2

+
Φ

kT

∑
±

q2
i D̃ic

−
i . (44)



7. Macroscopic electroosmotic mobilities.

The macroscopic laws of electroosmotic

V = −λ11px − λ12ψx , J = −λ21px − λ22ψx , (45)

satisfy an following important condition : the mobilities λij obey the Onsager
condition λ12 = λ21, known in nonequilibrium thermodynamics. Equations (45)
explain the effect of electroosmosis and allow the difference in the water levels
in the tubes to be calculated.
Indeed, the total velocity in the equilibrium state equals 0, and the pressure
gradient px can be obtained by the equality

px = −λ12

λ11
ψx .

Equations (45) also explain why the flow through the membrane induces an
electrical field. For neutral electrolytes we have J = 0 ; therefore the second
equation of (45) implies that the pressure gradient px induces an electrical field
such that

ψx = −λ21

λ22
px . (46)



The induced electrical field reduces hydrodynamic permeability. Because of
(46), the first equation in (45) implies that

px = −λef ψx , λef = λ11 − λ2
12/λ22.

Observe, that the mobilities λij do not depend on the ζ- potentials ζ0 and ζL
though these potentials control the macroelectrical field.

8. Conclusions.

We have proposed a two-scale one-dimensional model for osmotic nanoflows in
thin horizontal slits under the action of a pressure gradient and an external
electric field. The model is obtained by using two scales and applying the
method of homogenization to the Stokes equation for the flow of ion
components and the Poisson-Boltzmann equation for the induced electric field.
Introducing a fast variable and using two-scale asymptotic expansions, we
managed to derive macroequations with the coefficients calculated on the basis
of microequations.
The averaged model is the generalization of the Darcy equation and the
Boltzmann-Smoluchowski equation. In this model, the mean hydrodynamic flow
and the mean electric current depend linearly on the pressure gradient and
external electric field, and the coefficients obey the Onsager conditions of
symmetry.


