Asymptotics for eigenelements of

Laplacian in a domain with oscillating boundary

Youcef Amirat
Laboratoire de Mathématiques
Université Clermont-Ferrand 2 et CNRS
Gregory A. Chechkin
Moscow State University
Rustem R. Gadyl'shin
Russian Academy of Sciences, Ufa

Consider the following spectral problem :

$$
\left\{\begin{array}{l}
-\Delta u_{\varepsilon}=\lambda_{\varepsilon} u_{\varepsilon} \text { in } \Omega^{\varepsilon}, \tag{1}\\
u_{\varepsilon}=0 \text { on } \Gamma_{\varepsilon}, \\
\frac{\partial u_{\varepsilon}}{\partial \nu}=0 \text { on } \partial \Omega^{\varepsilon} \backslash \Gamma_{\varepsilon}
\end{array}\right.
$$

where Ω^{ε} is a domain with oscillating boundary, Γ_{ε} is the oscillating boundary, and ν denotes the outward unit normal vector to Ω^{ε}.

Figure - Membrane with oscillating boundary.

The domain Ω^{ε} is a small perturbation of a bounded domain Ω of \mathbb{R}^{2} located in the upper half space. We assume the boundary $\partial \Omega$ (of Ω) to be piecewise smooth, consisting of four parts: $\partial \Omega=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$, where Γ_{0} is the segment $\left[-\frac{1}{2}, \frac{1}{2}\right]$ on the abscissa axis, and Γ_{2} and Γ_{3} belong to the straight lines $x_{1}=-\frac{1}{2}$ et $x_{1}=\frac{1}{2}$, respectively.

Figure - Membrane with oscillating boundary.

Here $\varepsilon=\frac{1}{2 \mathcal{N}+1}$ is a small parameter where \mathcal{N} is a large integer number. Given a smooth negative 1-periodic even function $F\left(\xi_{1}\right)$ such that $F^{\prime}\left(\xi_{1}\right)=0$ for $\xi_{1}= \pm \frac{1}{2}$ and $\xi_{1}=0$, we denote

$$
\Pi_{\varepsilon}=\left\{x \in \mathbb{R}^{2}: x_{1} \in\left(-\frac{1}{2}, \frac{1}{2}\right), \varepsilon F\left(\frac{x_{1}}{\varepsilon}\right)<x_{2} \leq 0\right\}
$$

and we define the domain Ω^{ε} by (see Figure 1)

$$
\Omega^{\varepsilon}=\Omega \cup \Pi_{\varepsilon} .
$$

Figure - Membrane with oscillating boundary.

Denote

$$
\Gamma=\left\{\xi \in \mathbb{R}^{2}:-\frac{1}{2}<\xi_{1}<\frac{1}{2}, \xi_{2}=F\left(\xi_{1}\right)\right\}
$$

and

$$
\Pi=\left\{\xi \in \mathbb{R}^{2}:-\frac{1}{2}<\xi_{1}<\frac{1}{2}, \xi_{2}>F\left(\xi_{1}\right)\right\}
$$

(Π is a semi-infinite strip, see Figure).

Figure - Cell of periodicity.

Thus the boundary of Ω^{ε} consists of four parts: $\partial \Omega^{\varepsilon}=\Gamma_{\varepsilon} \cup \Gamma_{1} \cup \Gamma_{2, \varepsilon} \cup \Gamma_{3, \varepsilon}$, où

$$
\begin{gathered}
\Gamma_{\varepsilon}=\left\{x \in \mathbb{R}^{2}:\left(x_{1}, 0\right) \in \Gamma_{0}, x_{2}=\varepsilon F\left(\frac{x_{1}}{\varepsilon}\right)\right\}, \\
\Gamma_{2, \varepsilon}=\Gamma_{2} \cup \\
\\
\quad\left\{x \in \mathbb{R}^{2}: x_{1}=-\frac{1}{2}, \varepsilon F\left(-\frac{1}{2 \varepsilon}\right) \leq x_{2} \leq 0\right\}, \\
\Gamma_{3, \varepsilon}= \\
\Gamma_{3} \cup\left\{x \in \mathbb{R}^{2}: x_{1}=\frac{1}{2}, \varepsilon F\left(\frac{1}{2 \varepsilon}\right) \leq x_{2} \leq 0\right\} .
\end{gathered}
$$

We are interested in the asymptotic behavior of λ_{ε} and u_{ε} when $\varepsilon \rightarrow 0$.
We distinguish two cases :

- λ_{0} is a simple eigenvalue of the limit problem
- λ_{0} is a multiple eigenvalue of the limit problem

Theorem. Assume that λ_{0} is a simple eigenvalue of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{0}=\lambda_{0} u_{0} \quad \text { in } \Omega, \tag{2}\\
u_{0}=0 \quad \text { on } \Gamma_{0}, \quad \frac{\partial u_{0}}{\partial \nu}=0 \quad \text { on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3},
\end{array}\right.
$$

and u_{0} is the corresponding eigenfunction, with norm 1 in $L_{2}(\Omega)$. Then
a) there exists a simple eigenvalue λ_{ε} of the perturbed problem (1), converging to λ_{0} as $\varepsilon \rightarrow 0$;
b) the asymptotic expansion at order 1 of λ_{ε} is

$$
\begin{aligned}
\lambda_{\varepsilon} & =\lambda_{0}+\varepsilon \lambda_{1}+o(\varepsilon), \text { with } \\
\lambda_{1} & =-C(F) \int_{\Gamma_{0}}\left(\frac{\partial u_{0}}{\partial \nu}\right)^{2} d s,
\end{aligned}
$$

where $C(F)$ is a positive constant depending only on the function F, defined via the solution of

$$
\left\{\begin{array}{l}
\Delta_{\xi} X=0 \text { in } \Pi, \tag{3}\\
X=0 \text { on } \Gamma, \quad \frac{\partial X}{\partial \xi_{1}}=0 \quad \text { for } \xi_{1}= \pm \frac{1}{2}, \\
X(\xi)=\xi_{2}+C(F) \text { for } \xi_{2} \rightarrow+\infty .
\end{array}\right.
$$

To prove the result we employ the method of matching of asymptotic expansions, initiated by A.M. Il'in (1976), ... in different problems.

We consider an asymptotic expansion inside the domain Ω (called external expansion) in the form

$$
u_{\varepsilon}(x)=u_{0}(x)+\ldots
$$

and an asymptotic expansion of the eigenvalue λ_{ε}

$$
\lambda_{\varepsilon}=\lambda_{0}+\ldots
$$

Since u_{0} is not defined in a neighborhood of Γ_{ε}, we introduce an expansion (called inner expansion) in a neighborhood of Γ_{ε}, then we use truncation functions to build an asymptotic expansion in the whole domain Ω^{ε}.

Consider the Taylor expansion of u_{0} (with respect to x_{2}) as $x_{2} \rightarrow 0$. According to the limit problem (2) verified by u_{0}, we have

$$
u_{0}(x)=\alpha_{0}\left(x_{1}\right) x_{2}+O\left(x_{2}^{3}\right)
$$

where $\alpha_{0}\left(x_{1}\right)=\left.\frac{\partial u_{0}}{\partial x_{2}}\right|_{x_{2}=0}$ and

$$
\alpha_{0}^{\prime}\left(\pm \frac{1}{2}\right)=0
$$

By the change of variables $\xi_{2}=\frac{x_{2}}{\varepsilon}$, we deduce that

$$
u_{0}\left(x_{1}, \varepsilon \xi_{2}\right)=\varepsilon \alpha_{0}\left(x_{1}\right) \xi_{2}+O\left(\varepsilon^{3} \xi_{2}^{3}\right)
$$

By definition, the leading term of the inner asymptotic expansion satisfies the boundary conditions of the perturbed problem (1) on Γ_{ε} and admits the asymptotic expansion (as $\xi_{2} \rightarrow+\infty$) as above.

Then the inner asymptotic expansion is in the form

$$
u_{\varepsilon}(x)=\varepsilon v_{1}\left(\xi ; x_{1}\right)+\ldots
$$

where $\xi=\frac{x}{\varepsilon}$,

$$
v_{1}\left(\xi ; x_{1}\right) \sim \alpha_{0}\left(x_{1}\right) \xi_{2} \quad \text { quand } \xi_{2} \rightarrow+\infty
$$

and x_{1} plays the role of a "slow variable".
We have

$$
\begin{gathered}
\Delta\left(v_{1}\left(\frac{x}{\varepsilon} ; x_{1}\right)\right)=\varepsilon^{-2} \Delta_{\xi} v_{1}+2 \varepsilon^{-1} \frac{\partial^{2} v_{1}}{\partial x_{1} \partial \xi_{1}}+\frac{\partial^{2} v_{1}}{\partial x_{1}^{2}} \\
\left\{\begin{array}{l}
\frac{\partial}{\partial \nu} v_{1}\left(\frac{x}{\varepsilon} ; x_{1}\right)=\varepsilon^{-1} \frac{\partial v_{1}}{\partial \xi_{1}}+\frac{\partial v_{1}}{\partial x_{1}} \quad \text { on } \Gamma_{3}, \\
\frac{\partial}{\partial \nu} v_{1}\left(\frac{x}{\varepsilon} ; x_{1}\right)=-\varepsilon^{-1} \frac{\partial v_{1}}{\partial \xi_{1}}-\frac{\partial v_{1}}{\partial x_{1}} \quad \text { on } \Gamma_{2} .
\end{array}\right.
\end{gathered}
$$

From the perturbed problem (1) we deduce, by identifying the terms of order ε^{-1} for the equation and ε^{0} for the boundary conditions, the boundary-value problem :

$$
\left\{\begin{array}{l}
\Delta_{\xi} v_{1}=0 \text { in } \Pi, \\
v_{1}=0 \text { on } \Gamma, \quad \frac{\partial v_{1}}{\partial \xi_{1}}=0 \text { for } \xi_{1}= \pm \frac{1}{2}, \\
v_{1} \sim \alpha_{0}\left(x_{1}\right) \xi_{2} \quad \text { as } \xi_{2} \rightarrow+\infty
\end{array}\right.
$$

Thus,

$$
v_{1}\left(\xi ; x_{1}\right)=\alpha_{0}\left(x_{1}\right) X(\xi)
$$

where X is the solution of (3) in the semi-infinite strip, and then

$$
v_{1}\left(\xi ; x_{1}\right)=\alpha_{0}\left(x_{1}\right)\left(\xi_{2}+C(F)\right) \quad \text { as } \xi_{2} \rightarrow+\infty
$$

Since

$$
\frac{\partial v_{1}}{\partial x_{1}}\left(\xi ; x_{1}\right)=0 \quad \text { for } x_{1}= \pm \frac{1}{2}
$$

we have

$$
\frac{\partial v_{1}}{\partial \nu}\left(\frac{x}{\varepsilon} ; x_{1}\right)=0 \quad \text { on } \Gamma_{2, \varepsilon} \cup \Gamma_{3, \varepsilon}
$$

The inner expansion produced a discrepancy at infinity by the term : $\varepsilon C(F) \alpha_{0}\left(x_{1}\right)$.
Introducing a new term in the external expansion at order ε, we eliminate this discrepancy.
Rewriting the asymptotic of εv_{1} as $\xi_{2} \rightarrow+\infty$ in terms of the variable x, we see that the external expansion must have the form

$$
u_{\varepsilon}(x)=u_{0}(x)+\varepsilon u_{1}(x)+\ldots
$$

where

$$
u_{1}(x) \sim C(F) \alpha_{0}\left(x_{1}\right) \quad \text { quand } x_{2} \rightarrow 0
$$

Since u_{1} is smooth, it is equivalent to set :

$$
u_{1}\left(x_{1}, 0\right)=C(F) \alpha_{0}\left(x_{1}\right)
$$

Hence the boundary condition for u_{1} on Γ_{0}.
Then we write

$$
\lambda_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1}+\ldots
$$

Reporting in the perturbed problem (1), identifying the terms of oder ε^{1}, we deduce the boundary-value problem for u_{1} :

$$
\left\{\begin{array}{l}
-\Delta u_{1}=\lambda_{0} u_{1}+\lambda_{1} u_{0} \quad \text { dans } \Omega \\
u_{1}=C(F) \alpha_{0} \text { on } \Gamma_{0} \\
\frac{\partial u_{1}}{\partial \nu}=0 \text { on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}
\end{array}\right.
$$

The constant λ_{1} may be obtained from the solvability condition of this problem. Multiplying the previous equation by u_{0} and taking into account of the normalisation in $L_{2}(\Omega)$, it follows that

$$
-\int_{\Omega} \Delta u_{1} u_{0} d x=\lambda_{0} \int_{\Omega} u_{1} u_{0} d x+\lambda_{1}
$$

Using twice the Green formula it follows that

$$
\begin{aligned}
& -\int_{\Omega} \Delta u_{1} u_{0} d x=\int_{\Omega}\left(\nabla u_{1}, \nabla u_{0}\right) d x-\int_{\partial \Omega} \frac{\partial u_{1}}{\partial \nu} u_{0} d s \\
& =-\int_{\Omega} u_{1} \Delta u_{0} d x-\int_{\partial \Omega} \frac{\partial u_{1}}{\partial \nu} u_{0} d s+\int_{\partial \Omega} \frac{\partial u_{0}}{\partial \nu} u_{1} d s
\end{aligned}
$$

$$
=\lambda_{0} \int_{\Omega} u_{1} u_{0} d x-C(F) \int_{-\frac{1}{2}}^{\frac{1}{2}} \alpha_{0}^{2}\left(x_{1}\right) d x_{1}
$$

Note that we used

$$
\frac{\partial u_{0}}{\partial \nu}=-\frac{\partial u_{0}}{\partial x_{2}}=-\alpha_{0}\left(x_{1}\right), \text { on } \Gamma_{0} .
$$

It follows that

$$
\lambda_{1}=-C(F) \int_{-\frac{1}{2}}^{\frac{1}{2}} \alpha_{0}^{2}\left(x_{1}\right) d x_{1}
$$

To define uniquely u_{1} we impose

$$
\int_{\Omega} u_{0}(x) u_{1}(x) d x=0
$$

Thus, the method of matching of asymptotic expansions allows to obtain the first order corrector of the eigenvalue of the perturbed problem (1). To justify the construction we continue the process.

Consider the Taylor expansion of u_{1} (with respect to x_{2}) as $x_{2} \rightarrow 0$. Since $u_{1}(x)$ is smooth, one can write

$$
u_{1}(x)=u_{1}\left(x_{1}, 0\right)+\frac{\partial u_{1}}{\partial x_{2}}\left(x_{1}, 0\right) x_{2}+\ldots
$$

then

$$
u_{1}(x)=C(F) \alpha_{0}\left(x_{1}\right)+\alpha_{1}\left(x_{1}\right) x_{2}+\ldots,
$$

where $\alpha_{1}\left(x_{1}\right)=\frac{\partial u_{1}}{\partial x_{2}}\left(x_{1}, 0\right)$. According to the regularity of u_{1} homogeneous Neumann boundary conditions on Γ_{2} and Γ_{3} satisfied by u_{1}, we have

$$
\alpha_{1}^{\prime}\left(\pm \frac{1}{2}\right)=0
$$

The construction of the external expansion implied a discrepancy of the asymptotics at 0 by the term : $\varepsilon^{2} \alpha_{1}\left(x_{1}\right)$.
introdicing a new term of order 2 in the inner expansion, we eliminate this discrepancy.

Precisely, rewriting the asymptotic $u_{0}+\varepsilon u_{1}\left(\right.$ as $\left.x_{2} \rightarrow 0\right)$ by setting $x_{2}=\varepsilon \xi_{2}$, we deduce that the inner expansion must be in the form

$$
u_{\varepsilon}(x)=\varepsilon v_{1}\left(\xi ; x_{1}\right)+\varepsilon^{2} v_{2}\left(\xi ; x_{1}\right)+\ldots
$$

where

$$
v_{2}\left(\xi ; x_{1}\right) \sim \alpha_{1}\left(x_{1}\right) \xi_{2} \quad \text { quand } \xi_{2} \rightarrow+\infty
$$

Reporting the inner expansion of u_{ε} in the perturbed problem (1) and identifying the terms of order ε^{0} for the equation and ε the boundary conditions, we obtain :

$$
\left\{\begin{array}{l}
-\Delta_{\xi} v_{2}=2 \frac{\partial^{2} v_{1}}{\partial x_{1} \partial \xi_{1}} \quad \text { in } \Pi \\
v_{2}=0 \quad \text { on } \Gamma, \quad \frac{\partial v_{2}}{\partial \xi_{1}}=0 \quad \text { for } \xi_{1}= \pm \frac{1}{2}
\end{array}\right.
$$

Consider the auxiliary problem in semi-infinite strip Π :

$$
\Delta_{\xi} \widetilde{X}=\frac{\partial X}{\partial \xi_{1}} \quad \text { in } \Pi, \quad \widetilde{X}=0 \quad \text { on } \partial \Pi
$$

We show that this problem has a solution with the asymptotic

$$
\widetilde{X}(\xi)=0 \quad \text { quand } \xi_{2} \rightarrow+\infty
$$

Note that, due to the eveness of F, the solution \widetilde{X} is even in ξ_{1}, and then admits a 1-periodic extension with respect to ξ_{1}.
Then it is easy to see that the function

$$
v_{2}\left(\xi ; x_{1}\right)=\alpha_{1}\left(x_{1}\right) X(\xi)-2 \alpha_{0}^{\prime}\left(x_{1}\right) \widetilde{X}(\xi)
$$

is the 1-periodic solution, which admits the asymptotics

$$
v_{2}\left(\xi ; x_{1}\right)=\alpha_{1}\left(x_{1}\right) \xi_{2}+C(F) \alpha_{1}\left(x_{1}\right) \quad \text { quand } \xi_{2} \rightarrow+\infty
$$

Moreover we verify that

$$
\frac{\partial v_{2}}{\partial \nu}\left(\frac{x}{\varepsilon} ; x_{1}\right)=0 \quad \text { on } \Gamma_{2, \varepsilon} \cup \Gamma_{3, \varepsilon}
$$

Denote by $\chi(s)$ a truncation function, $\chi(s)=0$ for $s<1$ and $\chi(s)=1$ for $s>2$. Define also $\widetilde{\chi}_{t}\left(x_{2}\right)=\chi\left(\frac{x_{2}}{t}\right)$, which equals 0 for $x_{2}<t$ and 1 for $x_{2}>2 t$, where $t>0$ is sufficiently large.
Set

$$
\tilde{\lambda}_{\varepsilon}=\lambda_{0}+\varepsilon \lambda_{1},
$$

and

$$
\begin{aligned}
& \widetilde{u}_{\varepsilon}(x)=\left(u_{0}(x)+\varepsilon u_{1}(x)+\varepsilon^{2} u_{2}(x)\right) \chi\left(\frac{x_{2}}{\varepsilon^{\beta}}\right) \\
& \quad+\left(\varepsilon v_{1}\left(\frac{x}{\varepsilon} ; x_{1}\right)+\varepsilon^{2} v_{2}\left(\frac{x}{\varepsilon} ; x_{1}\right)\right)\left(1-\chi\left(\frac{x_{2}}{\varepsilon^{\beta}}\right)\right),
\end{aligned}
$$

where β is a fixed real number $(0<\beta<1)$, and

$$
u_{2}(x)=C(F) \alpha_{1}\left(x_{1}\right)\left(1-\tilde{\chi}_{t}\left(x_{2}\right)\right) .
$$

We verify that :

$$
\widetilde{u}_{\varepsilon}=0 \quad \text { on } \Gamma_{\varepsilon}, \quad \frac{\partial \widetilde{u}_{\varepsilon}}{\partial \nu}=0 \quad \text { on } \Gamma_{1} \cup \Gamma_{2, \varepsilon} \cup \Gamma_{3, \varepsilon} .
$$

Moreover, one can write

$$
-\Delta \widetilde{u}_{\varepsilon}=\widetilde{\lambda}_{\varepsilon} \widetilde{u}_{\varepsilon}+f_{\varepsilon} \quad \text { in } \Omega^{\varepsilon}
$$

with, choosing $\frac{2}{3}<\beta<1$,

$$
\left\|f_{\varepsilon}\right\|_{L_{2}\left(\Omega^{\varepsilon}\right)}=o(\varepsilon) .
$$

Note that we also have

$$
\left\|\widetilde{u}_{\varepsilon}\right\|_{L_{2}\left(\Omega^{\varepsilon}\right)}=1+o(1) .
$$

To conclude we use the following lemma.

Lemma. Consider the boundary-value problem, with $F_{\varepsilon} \in L^{2}\left(\Omega^{\varepsilon}\right)$:

$$
\begin{cases}-\Delta U_{\varepsilon}=\lambda U_{\varepsilon}+F_{\varepsilon} & \text { in } \Omega^{\varepsilon}, \tag{4}\\ U_{\varepsilon}=0 & \text { on } \Gamma_{\varepsilon}, \\ \frac{\partial U_{\varepsilon}}{\partial \nu}=0 & \text { on } \Gamma_{1} \cup \Gamma_{2, \varepsilon} \cup \Gamma_{3, \varepsilon} .\end{cases}
$$

Assume that λ_{0} is a eigenvalue of problem (2) of order $p \geq 1$. Then
(i) There are exactly p eigenvalues of the perturbed problem (1) converging to λ_{0}, as $\varepsilon \rightarrow 0$;
(ii) for λ proche de λ_{0} the solution U_{ε} of problem (4) satisfies the estimate

$$
\left\|U_{\varepsilon}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \leq \mathcal{C} \frac{\left\|F_{\varepsilon}\right\|_{L_{2}\left(\Omega^{\varepsilon}\right)}}{\prod_{j=1}^{p}\left|\lambda_{\varepsilon}^{j}-\lambda\right|}
$$

where $\lambda_{\varepsilon}^{1}, \ldots, \lambda_{\varepsilon}^{p}$ are the eigenvalue of problem (1), converging to λ_{0};
(iii) if a solution U_{ε} of problem (4) is orthogonal in $L_{2}\left(\Omega^{\varepsilon}\right)$ to the eigenfunction u_{ε}^{k} of problem (1), corresponding to $\lambda_{\varepsilon}^{k}$, then

$$
\left\|U_{\varepsilon}\right\|_{H^{1}\left(\Omega^{\varepsilon}\right)} \leq \mathcal{C} \frac{\left\|F_{\varepsilon}\right\|_{L_{2}\left(\Omega^{\varepsilon}\right)}}{\prod_{j=1 ; j \neq i}^{p}\left|\lambda_{\varepsilon}^{j}-\lambda\right|}
$$

Case where λ_{0} is a multiple eigenvalue.
We assume, without loss of generality that λ_{0} est double. Let $u_{0}^{(I)}(I=1,2)$ the corresponding eigenfunctions, orthonormalized in $L_{2}(\Omega)$, i.e.

$$
\begin{gathered}
\left\{\begin{array}{l}
-\Delta u_{0}^{(I)}=\lambda_{0} u_{0}^{(I)} \text { in } \Omega \\
u_{0}^{(I)}=0 \text { on } \Gamma_{0}, \\
\frac{\partial u_{0}^{(I)}}{\partial \nu}=0 \text { on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3},
\end{array}\right. \\
\int_{\Omega}\left(u_{0}^{(I)}\right)^{2} d x=1, \quad \int_{\Omega} u_{0}^{(1)} u_{0}^{(2)} d x=0, \quad I=1,2
\end{gathered}
$$

One can also impose :

$$
\int_{\Gamma_{0}} \frac{\partial u_{0}^{(1)}}{\partial \nu} \frac{\partial u_{0}^{(2)}}{\partial \nu} d s=0
$$

Moreover, for simplicity we assume that

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{\partial u_{0}^{(1)}}{\partial x_{2}}\right)^{2} d x_{1} \neq \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\frac{\partial u_{0}^{(2)}}{\partial x_{2}}\right)^{2} d x_{1}
$$

By the previous lemma there are two eigenvalues of problem (1), converging to λ_{0}, as $\varepsilon \rightarrow 0$. let us denote by $\lambda_{\varepsilon}^{(1)}$ and $\lambda_{\varepsilon}^{(2)}$ these eigenvalues; the corresponding eigenfunctions orthonormalized in $L_{2}\left(\Omega_{\varepsilon}\right)$ are denoted $u_{\varepsilon}^{(I)}$ $(I=1,2)$.

Theorem. Under the previous assumptions and notations, the eigenvalues $\lambda_{\varepsilon}^{(/)}$ of problem (1), converging to λ_{0} as $\varepsilon \rightarrow 0$, and the corresponding eigenfunctions $u_{\varepsilon}^{(I)}$ admit the expansions:

$$
\begin{aligned}
\lambda_{\varepsilon}^{(I)}= & \lambda_{0}+\varepsilon \lambda_{1}^{(I)}+o\left(\varepsilon^{\frac{5}{4}-\sigma}\right) \text { for any } \sigma>0 \\
\lambda_{1}^{(I)}= & -C(F) \int_{\Gamma_{0}}\left(\frac{\partial u_{0}^{(I)}}{\partial \nu}\right)^{2} d s \\
& \left\|u_{\varepsilon}^{(I)}-u_{0}^{(I)}\right\|_{H^{1}(\Omega)}+\left\|u_{\varepsilon}^{(I)}\right\|_{H^{1}\left(\Omega^{\varepsilon} \backslash \bar{\Omega}\right)}=o(1)
\end{aligned}
$$

Remark. By the method of matching of asymptotic expansions one can generalize this theorem and establish the asymptotic expansions of $\lambda_{\varepsilon}^{(/)}$ and $u_{\varepsilon}^{(l)}$ at any order.

Formal construction of the asymptotics

We write the external expansion :

$$
u_{\varepsilon}^{(I)}(x)=u_{0}^{(I)}(x)+\varepsilon u_{1}^{(I)}(x)+\varepsilon^{2} u_{2}^{(I)}(x)+\varepsilon^{3} u_{3}^{(I)}(x)+\sum_{i=4}^{\infty} \varepsilon^{i} u_{i}^{(I)}(x)
$$

the series for the eigenvalues

$$
\lambda_{\varepsilon}^{(I)}=\lambda_{0}+\varepsilon \lambda_{1}^{(I)}+\varepsilon^{2} \lambda_{2}^{(I)}+\varepsilon^{3} \lambda_{3}^{(I)}+\sum_{i=4}^{\infty} \varepsilon^{i} \lambda_{i}^{(I)}
$$

and the inner expansion :

$$
u_{\varepsilon}^{(I)}(x)=\varepsilon v_{1}^{(I)}\left(\xi ; x_{1}\right)+\varepsilon^{2} v_{2}^{(I)}\left(\xi ; x_{1}\right)+\varepsilon^{3} v_{3}^{(I)}\left(\xi ; x_{1}\right)+\sum_{i=4}^{\infty} \varepsilon^{i} v_{i}^{(I)}\left(\xi ; x_{1}\right)
$$

where $\xi=\frac{x}{\varepsilon}$.

Inserting these expansions in perturbed problem (1) and we find that the functions $u_{i}^{(I)}(i=1,2,3)$ satisfy the following boundary-value problems

$$
\begin{gathered}
\left\{\begin{array}{l}
-\Delta u_{1}^{(I)}=\lambda_{0} u_{1}^{(I)}+\lambda_{1}^{(I)} u_{0}^{(I)} \text { in } \Omega, \\
\frac{\partial u_{1}^{(I)}}{\partial \nu}=0 \text { on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3},
\end{array}\right. \\
\left\{\begin{array}{l}
-\Delta u_{2}^{(I)}=\lambda_{0} u_{2}^{(I)}+\lambda_{1}^{(I)} u_{1}^{(I)}+\lambda_{2}^{(I)} u_{0}^{(I)} \text { in } \Omega, \\
\frac{\partial u_{2}^{(I)}}{\partial \nu}=0 \text { on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3},
\end{array}\right. \\
\left\{\begin{array}{l}
-\Delta u_{3}^{(I)}=\lambda_{0} u_{3}^{(I)}+\lambda_{1}^{(I)} u_{2}^{(I)}+\lambda_{2}^{(I)} u_{1}^{(I)}+\lambda_{3}^{(I)} u_{0}^{(I)} \\
\text { in } \Omega, \\
\frac{\partial u_{3}^{(I)}}{\partial \nu}=0 \text { on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3} .
\end{array}\right.
\end{gathered}
$$

We complete these problems boundary conditions on Γ_{0} in the form

$$
u_{i}^{(I)}=\alpha_{i 0}^{(I)} \text { on } \Gamma_{0}, \quad i=1,2, \ldots
$$

where $\alpha_{i 0}^{(I)}\left(x_{1}\right)$ are unknown functions satisfying

$$
\left.\frac{d^{2 k+1} \alpha_{i 0}^{(I)}}{d x_{1}^{2 k+1}}\right|_{x_{1}= \pm \frac{1}{2}}=0, \quad k=0,1, \ldots
$$

Condition (23) is necessary for solvability of recurrent system of boundary value problems (23)-(23) in $C^{\infty}(\bar{\Omega})$. Moreover such solutions do exist if these problems are solvable in $H^{1}(\Omega)$, and in addition we deduce from the boundary value problems that the following formulae

$$
\left.\frac{d^{2 k+1} \alpha_{i j}^{(l)}}{d x_{1}^{2 k+1}}\right|_{x_{1}= \pm \frac{1}{2}}=0, \quad k=0,1, \ldots
$$

are true, where

$$
\alpha_{i j}^{(I)}\left(x_{1}\right)=\left.\frac{1}{j!} \frac{\partial^{j} u_{i}^{(I)}}{\partial x_{2}^{j}}\right|_{x_{2}=0}, \quad i, j=0,1, \ldots
$$

Also it should be noted that it follows from Problem (2) that

$$
\alpha_{02}^{(I)}\left(x_{1}\right) \equiv 0
$$

Note that if $\mathcal{F} \in H^{1}(\Omega)$ and $\alpha \in H^{1 / 2}\left(\Gamma_{0}\right)$ then for solvability in $H^{1}(\Omega)$ of the boundary value problem

$$
\left\{\begin{array}{l}
-\Delta u=\lambda_{0} u+\mathcal{F} \text { in } \Omega, \\
u=\alpha \text { on } \Gamma_{0}, \\
\frac{\partial u}{\partial \nu}=0 \text { on } \Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3},
\end{array}\right.
$$

it is necessary and sufficient to have the two identities

$$
\int \mathcal{F} u_{0}^{(I)} d x=\int \alpha \frac{\partial u_{0}^{(I)}}{\partial \nu} d s, \quad I=1,2
$$

By analogous way we obtain the equations and boundary conditions satisfied by the functions $v_{i}^{(l)}$:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta_{\xi} v_{1}^{(I)}=0 \text { in } \Pi, \\
v_{1}^{(I)}=0 \text { on } \Gamma, \\
\frac{\partial v_{1}^{(I)}}{\partial \xi_{1}}=0 \text { for } \xi_{1}= \pm \frac{1}{2}, x_{1}= \pm \frac{1}{2},
\end{array}\right. \\
& \left\{\begin{array}{l}
-\Delta_{\xi} v_{2}^{(I)}=2 \frac{\partial^{2} v_{1}^{(I)}}{\partial x_{1} \partial \xi_{1}} \text { in } \Pi, \\
v_{2}^{(I)}=0 \text { on } \Gamma, \\
\frac{\partial v_{2}^{(I)}}{\partial \xi_{1}}=-\frac{\partial v_{1}^{(I)}}{\partial x_{1}} \text { for } \xi_{1}= \pm \frac{1}{2}, x_{1}= \pm \frac{1}{2},
\end{array}\right. \\
& \left\{\begin{array}{l}
-\Delta_{\xi} v_{3}^{(I)}=2 \frac{\partial^{2} v_{2}^{(I)}}{\partial x_{1} \partial \xi_{1}}+\frac{\partial^{2} v_{1}^{(I)}}{\partial x_{1}^{2}}+\lambda_{0} v_{1}^{(I)} \text { in } \Pi, \\
v_{3}^{(I)}=0 \text { on } \Gamma, \\
\frac{\partial v_{3}^{(I)}}{\partial \xi_{1}}=-\frac{\partial v_{2}^{(I)}}{\partial x_{1}} \text { for } \xi_{1}= \pm \frac{1}{2}, x_{1}= \pm \frac{1}{2} .
\end{array}\right.
\end{aligned}
$$

We add the boundary conditions at infinity (as $\xi_{2} \rightarrow+\infty$), by matching the inner and external expansions. We obtain

$$
\begin{aligned}
& \sum_{i=0}^{3} \varepsilon^{i} u_{i}^{(I)}(x)=\sum_{i=1}^{3} \varepsilon^{i} V_{i}^{(I)}\left(\xi ; x_{1}\right)+O\left(\varepsilon^{4}\left(\xi_{2}^{4}+\xi_{2}\right)\right) \\
& \text { as } \quad x_{2}=\varepsilon \xi_{2} \rightarrow 0,
\end{aligned}
$$

where

$$
\begin{gathered}
V_{1}^{(I)}=\alpha_{01}^{(I)}\left(x_{1}\right) \xi_{2}+\alpha_{10}^{(I)}\left(x_{1}\right), \\
V_{2}^{(I)}=\alpha_{11}^{(I)}\left(x_{1}\right) \xi_{2}+\alpha_{20}^{(I)}\left(x_{1}\right) \\
V_{3}^{(I)}=\alpha_{03}^{(I)}\left(x_{1}\right) \xi_{2}^{3}+\alpha_{12}^{(I)}\left(x_{1}\right) \xi_{2}^{2}+\alpha_{21}^{(I)}\left(x_{1}\right) \xi_{2}+\alpha_{30}^{(I)}\left(x_{1}\right) .
\end{gathered}
$$

We must find $\lambda_{i}^{(I)}$ et $\alpha_{i 0}^{(I)}\left(x_{1}\right)$ so that the different boundary-value problems satisfied by $u_{i}^{(I)}$ and $v_{i}^{(I)}$ are solvable :

$$
v_{i}^{(I)} \sim V_{i}^{(I)} \text { as } \xi_{2} \rightarrow+\infty
$$

Let us determine $\alpha_{10}^{(I)}\left(x_{1}\right)$ and $v_{1}^{(I)}\left(\xi ; x_{1}\right)$. We verify that the function defined by

$$
v_{1}^{(I)}\left(\xi ; x_{1}\right)=\alpha_{01}^{(I)}\left(x_{1}\right) X(\xi)
$$

is the 1-periodic solution of the boundary-value problem

$$
\left\{\begin{array}{l}
\Delta_{\xi} v_{1}^{(I)}=0 \text { in } \Pi \\
v_{1}^{(I)}=0 \text { on } \Gamma \\
\frac{\partial v_{1}^{(I)}}{\partial \xi_{1}}=0 \text { pour } \xi_{1}= \pm \frac{1}{2}, \quad x_{1}= \pm \frac{1}{2}
\end{array}\right.
$$

with the asymptotics

$$
v_{1}^{(I)}\left(\xi ; x_{1}\right)=\alpha_{01}^{(I)}\left(x_{1}\right)\left(\xi_{2}+C(F)\right) \text { as } \xi_{2} \rightarrow+\infty
$$

Then, setting

$$
\alpha_{10}^{(I)}\left(x_{1}\right)=C(F) \alpha_{01}^{(I)}\left(x_{1}\right)
$$

we get that $v_{1}^{(I)}$ as defined above satisfies also

$$
v_{1}^{(I)} \sim V_{1}^{(I)}=\alpha_{01}^{(I)}\left(x_{1}\right) \xi_{2}+\alpha_{10}^{(I)}\left(x_{1}\right) \text { as } \xi_{2} \rightarrow+\infty
$$

Thus we constructed $\alpha_{10}^{(I)}$ et $v_{1}^{(I)}$.

Then we determine $\lambda_{1}^{(1)}$ et $u_{1}^{(I)}$.

$$
\lambda_{1}^{(I)}=-C(F) \int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\alpha_{01}^{(/)}\right)^{2}\left(x_{1}\right) d x_{1}
$$

We choose $u_{1}^{(1)}$ in the form :

$$
u_{1}^{(I)}=\widetilde{u}_{1}^{(I)}+\kappa_{1}^{(I)} u_{0}^{\left(I^{*}\right)}
$$

where

$$
\int_{\Omega} \widetilde{u}_{1}^{(\prime)}(x) u_{0}^{(k)}(x) d x=0, \quad I, k=1,2
$$

and the constants $\kappa_{1}^{(I)}$ are arbitrary (to be found so that $u_{2}^{(I)}$ exists). Here, $I^{*}=1$ if $I=2$ et $I^{*}=2$ if $I=1$. Thus,

$$
\alpha_{11}^{(I)}=\widetilde{\alpha}_{11}^{(I)}+\kappa_{1}^{(I)} \alpha_{01}^{\left(l^{*}\right)}
$$

where

$$
\widetilde{\alpha}_{11}^{(I)}=\left.\frac{\partial \widetilde{u}_{1}^{(I)}}{\partial x_{2}}\right|_{x_{2}=0},\left.\frac{d^{2 k+1} \widetilde{\alpha}_{11}^{(I)}}{d x_{1}^{2 k+1}}\right|_{x_{1}= \pm \frac{1}{2}}=0, k=0,1, \ldots
$$

Then we determine $\alpha_{20}^{(I)}\left(x_{1}\right)$ and $v_{2}\left(\xi ; x_{2}\right)$. Let \widetilde{X} be the solution of the problem, in the semi-infinite strip Π,

$$
\left\{\begin{array}{l}
\Delta_{\xi} \widetilde{X}=\frac{\partial X}{\partial \xi_{1}} \text { in } \Pi, \\
\widetilde{X}=0 \text { on } \partial \Pi, \quad \widetilde{X}(\xi)=0 \text { quand } \xi_{2} \rightarrow+\infty .
\end{array}\right.
$$

Then, the function defined by

$$
v_{2}^{(\prime)}\left(\xi ; x_{1}\right)=\alpha_{11}^{(1)}\left(x_{1}\right) X(\xi)-2\left(\alpha_{01}^{(1)}\right)^{\prime}\left(x_{1}\right) \widetilde{X}(\xi)
$$

is the 1-periodic solution of the boundary-value problem

$$
\begin{gathered}
\left\{\begin{array}{l}
-\Delta_{\xi} v_{2}^{(I)}=2 \frac{\partial^{2} v_{1}^{(I)}}{\partial x_{1} \partial \xi_{1}} \text { in } \Pi, \\
v_{2}^{(I)}=0 \text { on } \Gamma, \\
\frac{\partial v_{2}^{(I)}}{\partial \xi_{1}}=0 \text { for } \xi_{1}= \pm \frac{1}{2}, x_{1}= \pm \frac{1}{2},
\end{array}\right. \\
v_{2}^{(I)}\left(\xi ; x_{1}\right)=\alpha_{11}^{(I)}\left(x_{1}\right)\left(\xi_{2}+C(F)\right) \text { as } \xi_{2} \rightarrow+\infty,
\end{gathered}
$$

verifying also $v_{2}(I) \sim V_{2}^{(I)}=\alpha_{11}^{(1)}\left(x_{1}\right) \xi_{2}+\alpha_{20}^{(I)}\left(x_{1}\right)$, if we choose

$$
\alpha_{20}^{(I)}\left(x_{1}\right)=C(F)\left(\widetilde{\alpha}_{11}^{(I)}+\kappa_{1}^{(I)} \alpha_{01}^{\left(l^{*}\right)}\right) .
$$

Thus we defined $v_{2}^{(I)}$ and $\alpha_{20}^{(I)}$ (modulo $\kappa_{1}^{(I)}$, which is unknown yet).

Then we determine $\lambda_{2}^{(I)}, u_{2}^{(I)}$ and $\kappa_{1}^{(1)}$. We obtain

$$
\lambda_{2}^{(I)}=-C(F) \int_{-\frac{1}{2}}^{\frac{1}{2}} \widetilde{\alpha}_{11}^{(I)}\left(x_{1}\right) \alpha_{01}^{(I)}\left(x_{1}\right) d x_{1}
$$

then
$\kappa_{1}^{(I)}=\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \widetilde{\alpha}_{11}^{(I)}\left(x_{1}\right) \alpha_{01}^{\left(I^{*}\right)}\left(x_{1}\right) d x_{1}\right) /\left(\int_{-\frac{1}{2}}^{\frac{1}{2}}\left(\left(\alpha_{01}^{(\prime)}\right)^{2}\left(x_{1}\right)-\left(\alpha_{01}^{\left(/^{*}\right)}\right)^{2}\left(x_{1}\right)\right) d x_{1}\right)$.
Hence $u_{1}^{(I)}$. We choose $u_{2}^{(I)}$ in the form

$$
u_{2}^{(I)}=\widetilde{u}_{2}^{(1)}+\kappa_{2}^{(1)} u_{0}^{\left(\mu^{*}\right)},
$$

where

$$
\int_{\Omega} \widetilde{u}_{2}^{(1)}(x) u_{0}^{(k)}(x) d x=0, \quad I, k=1,2
$$

and the constants $\kappa_{2}^{(/)}$are arbitrary.
...ETC...

