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Consider the following spectral problem :
−∆uε = λεuε in Ωε,
uε = 0 on Γε,
∂uε
∂ν

= 0 on ∂Ωε\Γε,
(1)

where Ωε is a domain with oscillating boundary, Γε is the oscillating boundary,
and ν denotes the outward unit normal vector to Ωε.

Figure – Membrane with oscillating boundary.

Figure – Cell of periodicity.



The domain Ωε is a small perturbation of a bounded domain Ω of R2 located
in the upper half space. We assume the boundary ∂Ω (of Ω) to be piecewise
smooth, consisting of four parts : ∂Ω = Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3, where Γ0 is the
segment [− 1

2
, 1

2
] on the abscissa axis, and Γ2 and Γ3 belong to the straight lines

x1 = − 1
2

et x1 = 1
2
, respectively.

Figure – Membrane with oscillating boundary.



Here ε = 1
2N+1

is a small parameter where N is a large integer number. Given
a smooth negative 1-periodic even function F (ξ1) such that F ′(ξ1) = 0 for
ξ1 = ± 1

2
and ξ1 = 0, we denote

Πε = {x ∈ R2 : x1 ∈ (−1

2
,

1

2
), εF

(x1

ε

)
< x2 ≤ 0}

and we define the domain Ωε by (see Figure 1)

Ωε = Ω ∪ Πε.

Figure – Membrane with oscillating boundary.



Denote

Γ = {ξ ∈ R2 : −1

2
< ξ1 <

1

2
, ξ2 = F (ξ1)}

and

Π = {ξ ∈ R2 : −1

2
< ξ1 <

1

2
, ξ2 > F (ξ1)}

(Π is a semi-infinite strip, see Figure).

Figure – Cell of periodicity.



Thus the boundary of Ωε consists of four parts : ∂Ωε = Γε ∪ Γ1 ∪ Γ2,ε ∪ Γ3,ε, où

Γε = {x ∈ R2 : (x1, 0) ∈ Γ0, x2 = εF
(x1

ε

)
},

Γ2,ε =Γ2∪

{x ∈ R2 : x1 = −1

2
, εF

(
− 1

2ε

)
≤ x2 ≤ 0},

Γ3,ε = Γ3 ∪ {x ∈ R2 : x1 =
1

2
, εF

(
1

2ε

)
≤ x2 ≤ 0}.

We are interested in the asymptotic behavior of λε and uε when ε→ 0.
We distinguish two cases :

– λ0 is a simple eigenvalue of the limit problem

– λ0 is a multiple eigenvalue of the limit problem



Theorem. Assume that λ0 is a simple eigenvalue of the problem{
−∆u0 = λ0u0 in Ω,

u0 = 0 on Γ0,
∂u0
∂ν

= 0 on Γ1 ∪ Γ2 ∪ Γ3,
(2)

and u0 is the corresponding eigenfunction, with norm 1 in L2(Ω). Then
a) there exists a simple eigenvalue λε of the perturbed problem (1), converging
to λ0 as ε→ 0 ;
b) the asymptotic expansion at order 1 of λε is

λε = λ0 + ελ1 + o(ε), with

λ1 = −C(F )

∫
Γ0

(
∂u0

∂ν

)2

ds,

where C(F ) is a positive constant depending only on the function F , defined
via the solution of

∆ξX = 0 in Π,
X = 0 on Γ, ∂X

∂ξ1
= 0 for ξ1 = ± 1

2
,

X (ξ) = ξ2 + C(F ) for ξ2 → +∞.
(3)



To prove the result we employ the method of matching of asymptotic
expansions, initiated by A.M. Il’in (1976), ... in different problems.

We consider an asymptotic expansion inside the domain Ω (called external
expansion) in the form

uε(x) = u0(x) + . . .

and an asymptotic expansion of the eigenvalue λε

λε = λ0 + . . . .

Since u0 is not defined in a neighborhood of Γε, we introduce an expansion
(called inner expansion) in a neighborhood of Γε, then we use truncation
functions to build an asymptotic expansion in the whole domain Ωε.

Consider the Taylor expansion of u0 (with respect to x2) as x2 → 0. According
to the limit problem (2) verified by u0, we have

u0(x) = α0(x1)x2 + O(x3
2 ),

where α0(x1) = ∂u0
∂x2

∣∣∣
x2=0

and

α′0

(
±1

2

)
= 0.



By the change of variables ξ2 = x2
ε

, we deduce that

u0(x1, εξ2) = εα0(x1)ξ2 + O(ε3ξ3
2).

By definition, the leading term of the inner asymptotic expansion satisfies the
boundary conditions of the perturbed problem (1) on Γε and admits the
asymptotic expansion (as ξ2 → +∞) as above.

Then the inner asymptotic expansion is in the form

uε(x) = εv1 (ξ; x1) + . . .

where ξ = x
ε

,
v1(ξ; x1) ∼ α0(x1)ξ2 quand ξ2 → +∞,

and x1 plays the role of a “slow variable”.
We have

∆
(
v1(

x

ε
; x1)

)
= ε−2∆ξv1 + 2ε−1 ∂2v1

∂x1∂ξ1
+
∂2v1

∂x2
1

,
∂

∂ν
v1(

x

ε
; x1) = ε−1 ∂v1

∂ξ1
+
∂v1

∂x1
on Γ3,

∂

∂ν
v1(

x

ε
; x1) = −ε−1 ∂v1

∂ξ1
− ∂v1

∂x1
on Γ2.



From the perturbed problem (1) we deduce, by identifying the terms of order
ε−1 for the equation and ε0 for the boundary conditions, the boundary-value
problem : 

∆ξv1 = 0 in Π,

v1 = 0 on Γ, ∂v1
∂ξ1

= 0 for ξ1 = ± 1
2
,

v1 ∼ α0(x1)ξ2 as ξ2 → +∞.

Thus,
v1(ξ; x1) = α0(x1)X (ξ)

where X is the solution of (3) in the semi-infinite strip, and then

v1(ξ; x1) = α0(x1)(ξ2 + C(F )) as ξ2 → +∞.

Since
∂v1

∂x1
(ξ; x1) = 0 for x1 = ±1

2
,

we have
∂v1

∂ν

(x
ε

; x1

)
= 0 on Γ2,ε ∪ Γ3,ε.



The inner expansion produced a discrepancy at infinity by the term :
εC(F )α0(x1).
Introducing a new term in the external expansion at order ε, we eliminate this
discrepancy.
Rewriting the asymptotic of εv1 as ξ2 → +∞ in terms of the variable x , we see
that the external expansion must have the form

uε(x) = u0(x) + εu1(x) + . . . ,

where
u1(x) ∼ C(F )α0(x1) quand x2 → 0.

Since u1 is smooth, it is equivalent to set :

u1(x1, 0) = C(F )α0(x1).

Hence the boundary condition for u1 on Γ0.

Then we write
λε = λ0 + ελ1 + . . .



Reporting in the perturbed problem (1), identifying the terms of oder ε1, we
deduce the boundary-value problem for u1 :

−∆u1 = λ0u1 + λ1u0 dans Ω,
u1 = C(F )α0 on Γ0,
∂u1
∂ν

= 0 on Γ1 ∪ Γ2 ∪ Γ3.

The constant λ1 may be obtained from the solvability condition of this
problem. Multiplying the previous equation by u0 and taking into account of
the normalisation in L2(Ω), it follows that

−
∫
Ω

∆u1u0 dx = λ0

∫
Ω

u1u0 dx + λ1.

Using twice the Green formula it follows that

−
∫
Ω

∆u1u0 dx =

∫
Ω

(∇u1,∇u0) dx −
∫
∂Ω

∂u1

∂ν
u0 ds

= −
∫
Ω

u1∆u0 dx −
∫
∂Ω

∂u1

∂ν
u0 ds +

∫
∂Ω

∂u0

∂ν
u1 ds



= λ0

∫
Ω

u1u0 dx − C(F )

1
2∫

− 1
2

α2
0(x1) dx1.

Note that we used
∂u0

∂ν
= −∂u0

∂x2
= −α0(x1), on Γ0.

It follows that

λ1 = −C(F )

1
2∫

− 1
2

α2
0(x1) dx1.

To define uniquely u1 we impose∫
Ω

u0(x)u1(x) dx = 0.

Thus, the method of matching of asymptotic expansions allows to obtain the
first order corrector of the eigenvalue of the perturbed problem (1). To justify
the construction we continue the process.



Consider the Taylor expansion of u1 (with respect to x2) as x2 → 0. Since u1(x)
is smooth, one can write

u1(x) = u1(x1, 0) +
∂u1

∂x2
(x1, 0)x2 + . . .

then
u1(x) = C(F )α0(x1) + α1(x1)x2 + . . . ,

where α1(x1) = ∂u1
∂x2

(x1, 0). According to the regularity of u1 homogeneous
Neumann boundary conditions on Γ2 and Γ3 satisfied by u1, we have

α′1

(
±1

2

)
= 0.

The construction of the external expansion implied a discrepancy of the
asymptotics at 0 by the term : ε2α1(x1).
introdicing a new term of order 2 in the inner expansion, we eliminate this
discrepancy.



Precisely, rewriting the asymptotic u0 + εu1 (as x2 → 0) by setting x2 = εξ2, we
deduce that the inner expansion must be in the form

uε(x) = εv1(ξ; x1) + ε2v2(ξ; x1) + . . . ,

where
v2(ξ; x1) ∼ α1(x1)ξ2 quand ξ2 → +∞.

Reporting the inner expansion of uε in the perturbed problem (1) and
identifying the terms of order ε0 for the equation and ε the boundary
conditions, we obtain :

−∆ξv2 = 2
∂2v1

∂x1∂ξ1
in Π,

v2 = 0 on Γ,
∂v2

∂ξ1
= 0 for ξ1 = ±1

2
.



Consider the auxiliary problem in semi-infinite strip Π :

∆ξX̃ =
∂X

∂ξ1
in Π, X̃ = 0 on ∂Π.

We show that this problem has a solution with the asymptotic

X̃ (ξ) = 0 quand ξ2 → +∞.

Note that,due to the eveness of F , the solution X̃ is even in ξ1, and then
admits a 1-periodic extension with respect to ξ1.
Then it is easy to see that the function

v2(ξ; x1) = α1(x1)X (ξ)− 2α′0(x1)X̃ (ξ)

is the 1-periodic solution, which admits the asymptotics

v2(ξ; x1) = α1(x1)ξ2 + C(F )α1(x1) quand ξ2 → +∞.

Moreover we verify that

∂v2

∂ν

(x
ε

; x1

)
= 0 on Γ2,ε ∪ Γ3,ε.



Denote by χ(s) a truncation function, χ(s) = 0 for s < 1 and χ(s) = 1 for
s > 2. Define also χ̃t(x2) = χ

(
x2
t

)
, which equals 0 for x2 < t and 1 for x2 > 2t,

where t > 0 is sufficiently large.
Set

λ̃ε = λ0 + ελ1,

and
ũε(x) =

(
u0(x) + εu1(x) + ε2u2(x)

)
χ
( x2

εβ

)
+
(
εv1

(x
ε

; x1

)
+ ε2v2

(x
ε

; x1

))(
1− χ

( x2

εβ

))
,

where β is a fixed real number (0 < β < 1), and

u2(x) = C(F )α1(x1)(1− χ̃t(x2)).



We verify that :

ũε = 0 on Γε,
∂ũε
∂ν

= 0 on Γ1 ∪ Γ2,ε ∪ Γ3,ε.

Moreover, one can write

−∆ũε = λ̃εũε + fε in Ωε,

with, choosing 2
3
< β < 1,

‖fε‖L2(Ωε) = o(ε).

Note that we also have

‖ũε‖L2(Ωε) = 1 + o(1).

To conclude we use the following lemma.



Lemma. Consider the boundary-value problem, with Fε ∈ L2(Ωε) :{
−∆Uε = λUε + Fε in Ωε,
Uε = 0 on Γε,

∂Uε
∂ν

= 0 on Γ1 ∪ Γ2,ε ∪ Γ3,ε.
(4)

Assume that λ0 is a eigenvalue of problem (2) of order p ≥ 1. Then

(i) There are exactly p eigenvalues of the perturbed problem (1) converging
to λ0, as ε→ 0 ;

(ii) for λ proche de λ0 the solution Uε of problem (4) satisfies the estimate

‖Uε‖H1(Ωε) ≤ C
‖Fε‖L2(Ωε)

p∏
j=1

|λj
ε − λ|

where λ1
ε, . . . , λ

p
ε are the eigenvalue of problem (1), converging to λ0 ;

(iii) if a solution Uε of problem (4) is orthogonal in L2(Ωε) to the
eigenfunction uk

ε of problem (1), corresponding to λk
ε, then

‖Uε‖H1(Ωε) ≤ C
‖Fε‖L2(Ωε)

p∏
j=1;j 6=i

|λj
ε − λ|

.



Case where λ0 is a multiple eigenvalue.

We assume, without loss of generality that λ0 est double. Let u
(l)
0 (l = 1, 2) the

corresponding eigenfunctions, orthonormalized in L2(Ω), i.e.
−∆u

(l)
0 = λ0u

(l)
0 in Ω,

u
(l)
0 = 0 on Γ0,
∂u

(l)
0
∂ν

= 0 on Γ1 ∪ Γ2 ∪ Γ3,∫
Ω

(u
(l)
0 )2 dx = 1,

∫
Ω

u
(1)
0 u

(2)
0 dx = 0, l = 1, 2.

One can also impose : ∫
Γ0

∂u
(1)
0

∂ν

∂u
(2)
0

∂ν
ds = 0.

Moreover, for simplicity we assume that

1
2∫

− 1
2

(
∂u

(1)
0

∂x2

)2

dx1 6=

1
2∫

− 1
2

(
∂u

(2)
0

∂x2

)2

dx1.



By the previous lemma there are two eigenvalues of problem (1), converging to

λ0, as ε→ 0. let us denote by λ
(1)
ε and λ

(2)
ε these eigenvalues ; the

corresponding eigenfunctions orthonormalized in L2(Ωε) are denoted u
(l)
ε

(l = 1, 2).

Theorem. Under the previous assumptions and notations, the eigenvalues λ
(l)
ε

of problem (1), converging to λ0 as ε→ 0, and the corresponding

eigenfunctions u
(l)
ε admit the expansions :

λ(l)
ε =λ0 + ελ

(l)
1 + o

(
ε

5
4
−σ
)

for any σ > 0,

λ
(l)
1 =− C(F )

∫
Γ0

(
∂u

(l)
0

∂ν

)2

ds,

‖u(l)
ε − u

(l)
0 ‖H1(Ω) + ‖u(l)

ε ‖H1(Ωε\Ω) = o(1).

Remark. By the method of matching of asymptotic expansions one can
generalize this theorem and establish the asymptotic expansions of λ(l)

ε

and u
(l)
ε at any order.



Formal construction of the asymptotics

We write the external expansion :

u(l)
ε (x) = u

(l)
0 (x) + εu

(l)
1 (x) + ε2u

(l)
2 (x) + ε3u

(l)
3 (x) +

∞∑
i=4

εiu
(l)
i (x),

the series for the eigenvalues

λ(l)
ε = λ0 + ελ

(l)
1 + ε2λ

(l)
2 + ε3λ

(l)
3 +

∞∑
i=4

εiλ
(l)
i

and the inner expansion :

u(l)
ε (x) = εv

(l)
1 (ξ; x1) + ε2v

(l)
2 (ξ; x1) + ε3v

(l)
3 (ξ; x1) +

∞∑
i=4

εiv
(l)
i (ξ; x1),

where ξ = x
ε

.



Inserting these expansions in perturbed problem (1) and we find that the

functions u
(l)
i (i = 1, 2, 3) satisfy the following boundary-value problems{

−∆u
(l)
1 = λ0u

(l)
1 + λ

(l)
1 u

(l)
0 in Ω,

∂u
(l)
1
∂ν

= 0 on Γ1 ∪ Γ2 ∪ Γ3,{
−∆u

(l)
2 = λ0u

(l)
2 + λ

(l)
1 u

(l)
1 + λ

(l)
2 u

(l)
0 in Ω,

∂u
(l)
2
∂ν

= 0 on Γ1 ∪ Γ2 ∪ Γ3,
−∆u

(l)
3 = λ0u

(l)
3 + λ

(l)
1 u

(l)
2 + λ

(l)
2 u

(l)
1 + λ

(l)
3 u

(l)
0

in Ω,
∂u

(l)
3
∂ν

= 0 on Γ1 ∪ Γ2 ∪ Γ3.

We complete these problems boundary conditions on Γ0 in the form

u
(l)
i = α

(l)
i0 on Γ0, i = 1, 2, . . . ,

where α
(l)
i0 (x1) are unknown functions satisfying

d2k+1α
(l)
i0

dx2k+1
1

∣∣∣∣
x1=± 1

2

= 0, k = 0, 1, . . .



Condition (23) is necessary for solvability of recurrent system of boundary value
problems (23)–(23) in C∞(Ω). Moreover such solutions do exist if these
problems are solvable in H1(Ω), and in addition we deduce from the boundary
value problems that the following formulae

d2k+1α
(l)
ij

dx2k+1
1

∣∣∣∣
x1=± 1

2

= 0, k = 0, 1, . . . ,

are true, where

α
(l)
ij (x1) =

1

j!

∂ ju
(l)
i

∂x j
2

∣∣∣∣
x2=0

, i , j = 0, 1, . . . ,

Also it should be noted that it follows from Problem (2) that

α
(l)
02 (x1) ≡ 0.

Note that if F ∈ H1(Ω) and α ∈ H1/2(Γ0) then for solvability in H1(Ω) of the
boundary value problem 

−∆u = λ0u + F in Ω,
u = α on Γ0,
∂u
∂ν

= 0 on Γ1 ∪ Γ2 ∪ Γ3,

it is necessary and sufficient to have the two identities∫
Ω

Fu(l)
0 dx =

∫
Γ0

α
∂u

(l)
0

∂ν
ds, l = 1, 2.



By analogous way we obtain the equations and boundary conditions satisfied by
the functions v

(l)
i : 

∆ξv
(l)
1 = 0 in Π,

v
(l)
1 = 0 on Γ,

∂v
(l)
1

∂ξ1
= 0 for ξ1 = ±1

2
, x1 = ±1

2
,


−∆ξv

(l)
2 = 2

∂2v
(l)
1

∂x1∂ξ1
in Π,

v
(l)
2 = 0 on Γ,

∂v
(l)
2

∂ξ1
= −∂v

(l)
1

∂x1
for ξ1 = ±1

2
, x1 = ±1

2
,

−∆ξv
(l)
3 = 2

∂2v
(l)
2

∂x1∂ξ1
+
∂2v

(l)
1

∂x2
1

+ λ0v
(l)
1 in Π,

v
(l)
3 = 0 on Γ,

∂v
(l)
3

∂ξ1
= −∂v

(l)
2

∂x1
for ξ1 = ±1

2
, x1 = ±1

2
.



We add the boundary conditions at infinity (as ξ2 → +∞), by matching the
inner and external expansions. We obtain

3∑
i=0

εiu
(l)
i (x) =

3∑
i=1

εiV
(l)
i (ξ; x1) + O

(
ε4(ξ4

2 + ξ2)
)

as x2 = εξ2 → 0,

where
V

(l)
1 = α

(l)
01 (x1)ξ2 + α

(l)
10 (x1),

V
(l)
2 = α

(l)
11 (x1)ξ2 + α

(l)
20 (x1),

V
(l)
3 = α

(l)
03 (x1)ξ3

2 + α
(l)
12 (x1)ξ2

2 + α
(l)
21 (x1)ξ2 + α

(l)
30 (x1).

We must find λ
(l)
i et α

(l)
i0 (x1) so that the different boundary-value problems

satisfied by u
(l)
i and v

(l)
i are solvable :

v
(l)
i ∼ V

(l)
i as ξ2 → +∞.



Let us determine α
(l)
10 (x1) and v

(l)
1 (ξ; x1). We verify that the function defined by

v
(l)
1 (ξ; x1) = α

(l)
01 (x1)X (ξ)

is the 1-periodic solution of the boundary-value problem
∆ξv

(l)
1 = 0 in Π,

v
(l)
1 = 0 on Γ,

∂v
(l)
1

∂ξ1
= 0 pour ξ1 = ±1

2
, x1 = ±1

2
,

with the asymptotics

v
(l)
1 (ξ; x1) = α

(l)
01 (x1)(ξ2 + C(F )) as ξ2 → +∞.

Then, setting
α

(l)
10 (x1) = C(F )α

(l)
01 (x1),

we get that v
(l)
1 as defined above satisfies also

v
(l)
1 ∼ V

(l)
1 = α

(l)
01 (x1)ξ2 + α

(l)
10 (x1) as ξ2 → +∞.

Thus we constructed α
(l)
10 et v

(l)
1 .



Then we determine λ
(l)
1 et u

(l)
1 .

λ
(l)
1 = −C(F )

1
2∫

− 1
2

(α
(l)
01 )2(x1) dx1.

We choose u
(l)
1 in the form :

u
(l)
1 = ũ

(l)
1 + κ

(l)
1 u

(l∗)
0 ,

where ∫
Ω

ũ
(l)
1 (x)u

(k)
0 (x) dx = 0, l , k = 1, 2

and the constants κ
(l)
1 are arbitrary (to be found so that u

(l)
2 exists). Here,

l∗ = 1 if l = 2 et l∗ = 2 if l = 1. Thus,

α
(l)
11 = α̃

(l)
11 + κ

(l)
1 α

(l∗)
01 ,

where

α̃
(l)
11 =

∂ũ
(l)
1

∂x2

∣∣∣∣
x2=0

,
d2k+1α̃

(l)
11

dx2k+1
1

∣∣∣∣
x1=± 1

2

= 0, k = 0, 1, . . .



Then we determine α
(l)
20 (x1) and v2(ξ; x2). Let X̃ be the solution of the problem,

in the semi-infinite strip Π,{
∆ξX̃ = ∂X

∂ξ1
in Π,

X̃ = 0 on ∂Π, X̃ (ξ) = 0 quand ξ2 → +∞.

Then, the function defined by

v
(l)
2 (ξ; x1) = α

(l)
11 (x1)X (ξ)− 2(α

(l)
01 )′(x1)X̃ (ξ)

is the 1-periodic solution of the boundary-value problem
−∆ξv

(l)
2 = 2

∂2v
(l)
1

∂x1∂ξ1
in Π,

v
(l)
2 = 0 on Γ,

∂v
(l)
2

∂ξ1
= 0 for ξ1 = ±1

2
, x1 = ±1

2
,

v
(l)
2 (ξ; x1) = α

(l)
11 (x1) (ξ2 + C(F )) as ξ2 → +∞,

verifying also v2(l) ∼ V
(l)
2 = α

(l)
11 (x1)ξ2 + α

(l)
20 (x1), if we choose

α
(l)
20 (x1) = C(F )

(
α̃

(l)
11 + κ

(l)
1 α

(l∗)
01

)
.

Thus we defined v
(l)
2 and α

(l)
20 (modulo κ

(l)
1 , which is unknown yet).



Then we determine λ
(l)
2 , u

(l)
2 and κ

(l)
1 . We obtain

λ
(l)
2 = −C(F )

1
2∫

− 1
2

α̃
(l)
11 (x1)α

(l)
01 (x1) dx1

then

κ
(l)
1 =


1
2∫

− 1
2

α̃
(l)
11 (x1)α

(l∗)
01 (x1) dx1

/


1
2∫

− 1
2

((
α

(l)
01

)2

(x1)−
(
α

(l∗)
01

)2

(x1)

)
dx1

 .

Hence u
(l)
1 . We choose u

(l)
2 in the form

u
(l)
2 = ũ

(l)
2 + κ

(l)
2 u

(l∗)
0 ,

where ∫
Ω

ũ
(l)
2 (x)u

(k)
0 (x) dx = 0, l , k = 1, 2

and the constants κ
(l)
2 are arbitrary.

...ETC...


