Effective boundary condition for Stokes flow over a very rough surface

Youcef Amirat
Université Clermont-Ferrand 2 et CNRS, France

A joint work with
Olivier Bodart (Université Clermont-Ferrand 2 et CNRS, France)
Umberto De Maio (University Federico II, Naples, Italy)
Antonio Gaudiello (University of Cassino, Italy)

Petrovskii Conference, Moscou, 2011

We study the asymptotic behaviour of the solution of Stokes equations in a 3-dimensional domain with highly oscillating boundary.
Let $S=\left(0, l_{1}\right) \times\left(0, l_{2}\right), \widetilde{S}=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right)$, with $0<a_{i}<b_{i}<l_{i}(i=1,2)$ so that $\widetilde{S} \subset S$.
Let η_{ε} be the εS-periodic function defined on εS by

$$
\eta_{\varepsilon}\left(x^{\prime}\right)= \begin{cases}l_{3} & \text { if } x^{\prime} \in \varepsilon(S \backslash \widetilde{S}) \\ l_{3}^{\prime} & \text { if } x^{\prime} \in \varepsilon \widetilde{S}\end{cases}
$$

with $I_{3}<I_{3}^{\prime}, x^{\prime}=\left(x_{1}, x_{2}\right)$, and ε is a small positive parameter. Let

$$
\Omega_{\varepsilon}=\left\{x=\left(x^{\prime}, x_{3}\right) \in \mathbb{R}^{3}: x^{\prime} \in S, b\left(x^{\prime}\right)<x_{3}<\eta_{\varepsilon}\left(x^{\prime}\right)\right\}
$$

where b is a smooth function on \mathbb{R}^{2}, S-periodic and such that $b\left(x^{\prime}\right)<l_{3}$ for every $x^{\prime} \in \mathbb{R}^{2}$. We assume that $1 / \varepsilon \in \mathbb{N}$.
The domain Ω_{ε} is bounded at the bottom by the smooth wall

$$
P=\left\{x=\left(x^{\prime}, x_{3}\right) \in \mathbb{R}^{3}: x^{\prime} \in S, x_{3}=b\left(x^{\prime}\right)\right\}
$$

and at the top by the rough wall

$$
R_{\varepsilon}=\partial \Omega_{\varepsilon} \backslash\left(\overline{P \cup\left\{\left(x^{\prime}, x_{3}\right) \in \mathbb{R}^{3}: x^{\prime} \in \partial S, b\left(x^{\prime}\right)<x_{3}<I_{3}\right\}}\right)
$$

Figure - Domain Ω_{ε}

Figure 1: Vertical section of the domain Ω_{ε}

The velocity $u_{\varepsilon}=\left(u_{\varepsilon 1}, u_{\varepsilon 2}, u_{\varepsilon 3}\right)$ and the pressure p_{ε} of the fluid satisfy

$$
\left\{\begin{array}{l}
-\nu \Delta u_{\varepsilon}+\nabla p_{\varepsilon}=f \quad \text { in } \Omega_{\varepsilon} \tag{1}\\
\nabla \cdot u_{\varepsilon}=0 \text { in } \Omega_{\varepsilon}, \\
u_{\varepsilon}=0 \text { on } P \cup R_{\varepsilon}, \\
\left(u_{\varepsilon}, p_{\varepsilon}\right) S \text {-periodic (with respect to } x^{\prime} \text {), }
\end{array}\right.
$$

where the source term f belongs to $\left(L^{2}(\Omega)\right)^{3}$, with

$$
\Omega=\left\{\left(x^{\prime}, x_{3}\right) \in \mathbb{R}^{3}: x^{\prime} \in S, b\left(x^{\prime}\right)<x_{3}<l_{3}^{\prime}\right\},
$$

representing the "limit domain", as ε tends to zero.
Our aim is to study the asymptotic behavior, as ε goes to 0 , of the solution ($u_{\varepsilon}, p_{\varepsilon}$) of (1) satisfying $\int_{\Omega_{-}} p_{\varepsilon} d x=0$, where

$$
\Omega^{-}=\left\{\left(x^{\prime}, x_{3}\right) \in \mathbb{R}^{3}: x^{\prime} \in S, b\left(x^{\prime}\right)<x_{3}<1_{3}\right\} .
$$

- Using boundary layer correctors, we construct an asymptotic approximation of the solution ($u_{\varepsilon}, p_{\varepsilon}$) of (1) in Ω_{ε}.
- We derive an effective boundary condition of Navier's type, called wall law, for the Stokes system (1)

Some references

Formal derivation of wall laws (high Reynolds number):

1. Y. Achdou, O. Pironneau. Domain decomposition and wall laws, CRAS, 1995.
2. Y. Achdou, O. Pironneau, F. Valentin. Effective boundary conditions for laminar flows over periodic rough boundaries, J. Comp. Phys., 1998.
Couette flow and applications to the drag reduction (small Reynolds number) :
3. Y. Amirat and J. Simon, Riblets and drag minimization, Contemp. Math., 209, AMS, 1997.
4. Y. Amirat, D. Bresch, J. Lemoine and J. Simon, Effect of rugosity on a flow governed by Navier-Stokes equations, Quarterly of Appl. Math., 2001.
Justification of the Navier's slip condition for laminar 2-D Poiseuille flow and
3-D Couette flow (moderate Reynolds number) :
5. W. Jäger and A. Mikelić, On the Roughness-induced effective boundary conditions for an incompressible viscous flow, J. Differential Equations, 2001.
6. W. Jäger and A. Mikelić, Couette flows over a rough boundary and drag reduction, Comm. Math. Phys., 2003.

Flows governed by Navier-Stokes equations together with Navier's law on a rough surface :
7. J. Casado-Díaz, E. Fernández-Cara, J. Simon, Why viscous fluids adhere to rugose walls (a mathematical explanation), J. Differential Equations, 2003.
8. D. Bucur, E. Feireisl, S̆. Nec̆asová, J. Wolf, On the asymptotic limit of the Navier-Stokes system with rough boundaries, J. Differential equations, 2008.

Flows governed by Navier-Stokes equations over a boundary with random roughness:
9. A. Basson, D. Géerard-Varet, Wall laws for fuid flows at a boundary with random roughness, Comm. Pure Appl. Math. 61 (2008), no. 7, 941-987.

In these works the amplitude and the frequency of the oscillations are of the same order ε. The present work deals with the case with highly oscillating boundary : The amplitude of the oscillations is fixed and the frequency is of order ε.

A convergence result

We assume that the function b is Lipschitz-continuous. Denote

$$
\Omega_{\varepsilon}^{+}=\left\{\left(x^{\prime}, x_{3}\right) \in \Omega_{\varepsilon}: l_{3}<x_{3}<l_{3}^{\prime}\right\}, \quad \Sigma=S \times\left\{I_{3}\right\} .
$$

For each $m \geq 0$, we introduce the space

$$
\begin{aligned}
H_{\mathrm{per}}^{m}\left(\Omega_{\varepsilon}\right)=\{ & v \in H^{1}(A) \text { for any bounded open set } A \subset \mathcal{O}_{\varepsilon} \\
& \left.v\left(x+\left(l_{1}, 0,0\right)\right)=v\left(x+\left(0, l_{2}, 0\right)\right)=v(x) \text { for a.e. } x \in \mathcal{O}_{\varepsilon}\right\}
\end{aligned}
$$

where $\mathcal{O}_{\varepsilon}=\left\{x=\left(x^{\prime}, x_{3}\right) \in \mathbb{R}^{3}: x^{\prime} \in \mathbb{R}^{2}, b\left(x^{\prime}\right)<x_{3}<\eta_{\varepsilon}\left(x^{\prime}\right)\right\}$.
Let $\left(u_{\varepsilon}, p_{\varepsilon}\right)$ denotes the unique pair in $\left(H_{\text {per }}^{1}\left(\Omega_{\varepsilon}\right)\right)^{3} \times L^{2}\left(\Omega_{\varepsilon}\right)$ satisfying

$$
\left\{\begin{array}{l}
-\nu \Delta u_{\varepsilon}+\nabla p_{\varepsilon}=f \text { in } \Omega_{\varepsilon} \\
\nabla \cdot u_{\varepsilon}=0 \text { in } \Omega_{\varepsilon} \\
u_{\varepsilon}=0 \text { on } P \cup R_{\varepsilon} \\
\int_{\Omega^{-}} p_{\varepsilon} d x=0
\end{array}\right.
$$

where $f \in\left(L^{2}(\Omega)\right)^{3}$.

Let $\left(u^{-}, p^{-}\right) \in\left(H_{\text {per }}^{1}\left(\Omega^{-}\right)\right)^{3} \times L^{2}\left(\Omega^{-}\right)$the unique solution of

$$
\left\{\begin{array}{l}
-\nu \Delta u^{-}+\nabla p^{-}=f^{-} \text {in } \Omega^{-} \\
\nabla \cdot u^{-}=0 \text { in } \Omega^{-} \\
u^{-}=0 \text { on } \Sigma \cup P \\
\int_{\Omega^{-}} p^{-} d x=0
\end{array}\right.
$$

where $f^{-}=f_{\mid \Omega^{-}}$, then set

$$
u=\left\{\begin{array}{l}
0 \text { in } \Omega^{+}, \\
u^{-} \text {in } \Omega^{-} .
\end{array}\right.
$$

Using classical variational techniques and Bogovski's theorem one can show the following convergence result.

Proposition. Let $\widetilde{u_{\varepsilon}}$ denote the zero-extension to Ω of u_{ε}. Then, as $\varepsilon \rightarrow 0$.

$$
\begin{aligned}
& \widetilde{u}_{\varepsilon} \rightarrow u \text { strongly in }\left(H^{1}(\Omega)\right)^{3} \\
& p_{\varepsilon \mid \Omega^{-}} \rightarrow p^{-} \quad \text { strongly in } L^{2}\left(\Omega^{-}\right)
\end{aligned}
$$

Decay estimates

To construct an asymptotic approximation of the solution ($u_{\varepsilon}, p_{\varepsilon}$) we introduce the solution of a Stokes problem in an infinite vertical domain of \mathbb{R}^{3}.
Let $\Lambda^{+}=\widetilde{S} \times(0,+\infty), \Lambda^{-}=S \times(-\infty, 0)$ and $\Gamma=\widetilde{S} \times\{0\}$

Figure 1: Vertical section of the domain Λ

For $i=1,2$, we consider the pairs $\left(\Psi^{i,+}, \Pi^{i,+}\right)$ and ($\Psi^{i,-}, \Pi^{i,-}$) satisfying

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \Psi ^ { i , + } \in (H ^ { 1 } (\Lambda ^ { + })) ^ { 3 } , \Pi ^ { i , + } \in L _ { \text { loc } } ^ { 2 } (\Lambda ^ { + }) , } \\
{ \Psi ^ { i , - } \in (H _ { \text { loc } , \text { per } } ^ { 1 } (\Lambda ^ { - })) ^ { 3 } , \quad \nabla \Psi ^ { i , - } \in (L ^ { 2 } (\Lambda ^ { - })) ^ { 9 } , \quad \Pi ^ { i , - } \in L _ { \text { loc } } ^ { 2 } (\Lambda ^ { - }) } \\
{ }
\end{array} \left\{\begin{array}{l}
-\nu \Delta \Psi^{i, \pm}+\nabla \Pi^{i, \pm}=0 \text { in } \Lambda^{ \pm}, \\
\nabla \cdot \Psi^{i, \pm}=0 \text { in } \Lambda^{ \pm}, \\
\Psi^{i,+}=0 \text { on } \partial \Lambda^{+} \backslash \Gamma, \\
\Psi^{i,-}=0 \text { on }(S \times\{0\}) \backslash \Gamma, \\
\Psi^{i,+}=\Psi^{i,-} \text { on } \Gamma, \\
\sigma\left(\Psi^{i,+}, \Pi^{i,+}\right) n=\sigma\left(\Psi^{i,-}, \Pi^{i,-}\right) n+\nu e^{i} \text { on } \Gamma, \\
\int_{\Lambda^{-}} \Pi^{i,-} d x=0,
\end{array}\right.\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& H_{\text {loc, per }}^{1}\left(\Lambda^{-}\right)=\left\{v \in H^{1}\left(\Lambda^{\prime}\right) \text { for any bounded open set } \Lambda^{\prime} \subset \mathbb{R}^{2} \times(-\infty, 0):\right. \\
& \left.v\left(x+\left(I_{1}, 0,0\right)\right)=v\left(x+\left(0, I_{2}, 0\right)\right)=v(x) \text { for a.e. } x \in \mathbb{R}^{2} \times(-\infty, 0)\right\},
\end{aligned}
$$

$e^{1}=(1,0,0), e^{2}=(0,1,0), \sigma(\Psi, \Pi)=-\Pi I+2 \nu e(\Psi), I$ denoting the 3×3 identity matrix and $e(\Psi)=\frac{1}{2}\left(\nabla \Psi+(\nabla \Psi)^{\top}\right)$, and n is the unit normal vector on Γ external to $\Lambda_{\text {- }}$, i.e. $n=(0,0,1)$.

We denote by β^{i} the mean of $\Psi^{i,-}$ over a cross section of Λ^{-}:

$$
\beta^{i}(\delta)=\frac{1}{|S|} \int_{S} \psi^{i,-}\left(y^{\prime},-\delta\right) d y^{\prime}, \quad \delta \in(0,+\infty)
$$

where $y^{\prime}=\left(y_{1}, y_{2}\right)$.
Proposition. For each $i=1,2$, there is a unique solution (Ψ^{i}, Π^{i}) of the above Stokes system. Moreover,
(i) the vector β^{i} is independent of δ, and $\beta_{3}^{i}=0$;
(ii) for any $\alpha \in \mathbb{N}^{3}$ and $\delta \in(0,+\infty)$, there exist two positive constants c and $C_{\alpha, \delta}$ such that

$$
\begin{aligned}
& \left|\partial^{\alpha} \Psi^{i,+}\left(y^{\prime}, y_{3}\right)\right|+\left|\partial^{\alpha} \Pi^{i,+}\left(y^{\prime}, y_{3}\right)\right| \leq C_{\alpha, \delta} e^{-c y_{3}}, \forall\left(y^{\prime}, y_{3}\right) \in \widetilde{S} \times(\delta,+\infty) \\
& \left|\partial^{\alpha}\left(\Psi^{i,-}-\beta^{i}\right)\left(y^{\prime}, y_{3}\right)\right|+\left|\partial^{\alpha} \Pi^{i,-}\left(y^{\prime}, y_{3}\right)\right| \leq C_{\alpha, \delta} e^{c y_{3}}, \forall\left(y^{\prime}, y_{3}\right) \in S \times(-\infty,-\delta)
\end{aligned}
$$

Asymptotic expansion.
In what follows we assume that

$$
b \in H_{\mathrm{per}}^{6}(S), \quad f_{\mid \Omega^{-}} \in\left(H_{\mathrm{per}}^{4}\left(\Omega^{-}\right)\right)^{3}, \quad f_{\mid \Omega^{+}}=0
$$

Let $\left(w^{-}, q^{-}\right) \in\left(H_{\mathrm{per}}^{1}\left(\Omega^{-}\right)\right)^{3} \times L^{2}\left(\Omega^{-}\right)$be the unique solution of

$$
\left\{\begin{array}{l}
-\nu \Delta w^{-}+\nabla q^{-}=0 \text { in } \Omega^{-} \\
\nabla \cdot w^{-}=0 \text { in } \Omega^{-} \\
w^{-}=B \text { on } \Sigma \\
w^{-}=0 \text { on } P \\
\int_{\Omega^{-}} q^{-} d x=0
\end{array}\right.
$$

where

$$
B\left(x^{\prime}\right)=\sum_{i=1,2} \frac{\partial u_{i}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right) \beta^{i}, \quad x^{\prime} \in S
$$

with β^{i} denotes the mean of $\Psi^{i,-}$ over a cross section of Λ^{-}.
Let us now set

$$
w=\left\{\begin{array}{l}
0 \text { in } \Omega^{+}, \\
w^{-} \text {in } \Omega^{-},
\end{array} \quad q=\left\{\begin{array}{l}
0 \text { in } \Omega^{+}, \\
q^{-} \text {in } \Omega^{-}
\end{array}\right.\right.
$$

$$
\begin{aligned}
& \xi_{\varepsilon}(x)=\left\{\begin{array}{l}
\xi_{\varepsilon}^{+}(x)=\sum_{i=1,2} \frac{\partial u_{i}^{-}}{\partial_{3}}\left(x^{\prime}, r_{3}\right) \psi^{i,+}\left(\frac{x^{\prime}}{\varepsilon}, \frac{x_{3}-l_{3}}{\varepsilon}\right) \text { in } \Omega_{\varepsilon}^{+}, \\
\xi_{\varepsilon}^{-}(x)=\sum_{i=1,2}^{\frac{\partial u t i}{i}} \frac{x_{3}}{\partial x_{3}}\left(x^{\prime}, l_{3}\right) \psi^{i,-}\left(\frac{x^{\prime}}{\varepsilon}, \frac{x_{3}-1 / 3}{\varepsilon}\right)-B\left(x^{\prime}\right) \text { in } \Omega^{-},
\end{array}\right. \\
& \theta_{\varepsilon}(x)= \begin{cases}\theta_{\varepsilon}^{+}(x)=\sum_{i=1,2} \frac{\partial u_{i}^{-}}{\partial x_{3}}\left(x^{\prime}, l_{3}\right) \Pi^{i,+}\left(\frac{x^{\prime}}{\varepsilon}, \frac{x_{3}-1_{3}}{\varepsilon}\right) & \text { in } \Omega_{\varepsilon}^{+}, \\
\theta_{\varepsilon}^{-}(x)=\sum_{i=1,2}^{\frac{\partial u^{-}}{\partial y_{3}}}\left(x^{\prime}, l_{3}\right) \Pi^{i,-}\left(\frac{x^{\prime}}{\varepsilon}, \frac{x_{3}-13}{\varepsilon}\right) & \text { in } \Omega^{-},\end{cases}
\end{aligned}
$$

where, for $i=1,2,\left(\Psi^{i}, \Pi^{i}\right)$ is the unique solution of the Stokes system in the domain Λ.

Our first main result is :

Theorem 1. There exists a positive constant C, independent of ε, such that, for any $\gamma>0$ and ε small enough,

$$
\left\{\begin{array}{l}
\left\|u_{\varepsilon}-u-\varepsilon w-\varepsilon \xi_{\varepsilon}\right\|_{\left(H^{1}\left(\Omega_{\varepsilon}\right)\right)^{3}} \leq C \varepsilon^{\frac{3}{2}-\gamma} \\
\left\|p_{\varepsilon}-p^{-}-\varepsilon q^{-}-\left(\theta_{\varepsilon}^{-}-\frac{1}{\left|\Omega^{-}\right|} \int_{\Omega^{-}} \theta_{\varepsilon}^{-} d x\right)\right\|_{L^{2}\left(\Omega^{-}\right)} \leq C \varepsilon^{\frac{3}{2}-\gamma}
\end{array}\right.
$$

Wall law.

Denote

$$
\left\{\begin{array}{l}
\mathcal{U}_{\varepsilon}=u^{-}+\varepsilon w^{-}+\varepsilon \xi_{\varepsilon}^{-} \quad \text { in } \Omega^{-} \\
\mathcal{P}_{\varepsilon}=p^{-}+\varepsilon q^{-}+\theta_{\varepsilon}^{-} \quad \text { in } \Omega^{-}
\end{array}\right.
$$

Clearly, $\left(\mathcal{U}_{\varepsilon}, \mathcal{P}_{\varepsilon}\right) \in\left(H_{\text {per }}^{1}\left(\Omega^{-}\right)\right)^{3} \times L_{\text {per }}^{2}\left(\Omega^{-}\right)$and taking the trace of $\mathcal{U}_{\varepsilon}$ on $\left\{x_{3}=l_{3}\right\}$ we have

$$
\mathcal{U}_{\varepsilon}\left(x^{\prime}, I_{3}\right)=\varepsilon \sum_{i=1,2} \frac{\partial u_{i}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right) \Psi^{i,-}\left(y^{\prime}, 0\right), \quad x^{\prime} \in S, y^{\prime}=\frac{x^{\prime}}{\varepsilon}
$$

The fact that $u_{3}^{-}=w_{3}^{-}=0$ on $\left\{x_{3}=l_{3}\right\}$ provides that

$$
\left\{\begin{array}{l}
\sigma\left(u^{-}, p^{-}\right) n\left(x^{\prime}, I_{3}\right)=\left(\nu \frac{\partial u_{1}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right), \nu \frac{\partial u_{2}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right),-p^{-}\left(x^{\prime}, I_{3}\right)\right), x^{\prime} \in S \\
\sigma\left(w^{-}, q^{-}\right) n\left(x^{\prime}, I_{3}\right)=\left(\nu \frac{\partial w_{1}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right), \nu \frac{\partial w_{2}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right),-q^{-}\left(x^{\prime}, I_{3}\right)\right), x^{\prime} \in S
\end{array}\right.
$$

An easy computation gives

$$
\begin{aligned}
& \sigma\left(\varepsilon \xi_{\varepsilon}^{-}, \theta_{\varepsilon}^{-}\right) n\left(x^{\prime}, l_{3}\right)=\sum_{i=1,2} \frac{\partial u_{i}^{-}}{\partial x_{3}}\left(x^{\prime}, l_{3}\right) \sigma\left(\Psi^{i,-}, \Pi^{i,-}\right) n\left(y^{\prime}, 0\right) \\
& +\varepsilon \nu\left(\sum_{i=1,2} \frac{\partial}{\partial_{x_{1}}}\left(\frac{\partial u_{i}^{-}}{\partial x_{3}}\left(x^{\prime}, l_{3}\right)\right) \Psi_{3}^{i,-}\left(y^{\prime}, 0\right), \sum_{i=1,2} \frac{\partial}{\partial_{x_{2}}}\left(\frac{\partial u_{i}^{-}}{\partial x_{3}}\left(x^{\prime}, l_{3}\right)\right) \Psi_{3}^{i,-}\left(y^{\prime}, 0\right), 0\right)
\end{aligned}
$$

for $x^{\prime} \in S, y^{\prime}=\frac{x^{\prime}}{\varepsilon}$.
We now define the mean with respect to $y^{\prime} \in S$ of a function $\mathcal{U}=\mathcal{U}\left(x^{\prime}, y^{\prime}\right)$ by

$$
\langle\mathcal{U}\rangle\left(x^{\prime}\right)=\frac{1}{|S|} \int_{S} \mathcal{U}\left(x^{\prime}, y^{\prime}\right) d y^{\prime}, \quad x^{\prime} \in S
$$

Separating the slow and fast variables, taking the mean with respect to $y^{\prime} \in S$ of $\mathcal{U}_{\varepsilon}$ and denoting $U_{\varepsilon}=\left\langle\mathcal{U}_{\varepsilon}\right\rangle$ we obtain

$$
U_{\varepsilon}\left(x^{\prime}, I_{3}\right)=\varepsilon \sum_{i=1,2} \frac{\partial u_{i}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right)\left\langle\Psi^{i,-}\right\rangle(0)=\varepsilon B\left(x^{\prime}\right), \quad x^{\prime} \in S
$$

Similarly, separating the slow and fast variables, and taking the mean with respect to $y^{\prime} \in S$, according to the S-periodicity of $\Psi^{i,-}$ and the fact that $\beta_{3}^{i}=0$ we have $\left\langle\sigma\left(\Psi^{i,-}, \Pi^{i,-}\right) n(0)\right\rangle=\left(0,0,-\left\langle\Pi^{i,-}\right\rangle(0)\right)$ and then

$$
\left\langle\sigma\left(\varepsilon \xi_{\varepsilon}^{-}, \theta_{\varepsilon}^{-}\right) n\right\rangle\left(x^{\prime}, I_{3}\right)=\left(0,0,-\left\langle\theta_{\varepsilon}^{-}\right\rangle\left(x^{\prime}, I_{3}\right)\right), \quad x^{\prime} \in S .
$$

Then, denoting $P_{\varepsilon}=\left\langle\mathcal{P}_{\varepsilon}\right\rangle$, we deduce that

$$
\begin{aligned}
\sigma\left(U_{\varepsilon}, P_{\varepsilon}\right) n\left(x^{\prime}, I_{3}\right)= & \left(\nu \frac{\partial u_{1}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right), \nu \frac{\partial u_{2}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right),-p^{-}\left(x^{\prime}, I_{3}\right)-\left\langle\theta_{\varepsilon}^{-}\right\rangle\left(x^{\prime}, I_{3}\right)\right) \\
& +\varepsilon\left(\nu \frac{\partial w_{1}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right), \nu \frac{\partial w_{2}^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right),-q^{-}\left(x^{\prime}, I_{3}\right)\right), x^{\prime} \in S .
\end{aligned}
$$

Let M denote the 3×3-matrix with column vectors $\beta^{1}, \beta^{2}, 0$. Multiplying the previous equality by M yields

$$
M \sigma\left(U_{\varepsilon}, P_{\varepsilon}\right) n\left(x^{\prime}, I_{3}\right)=\nu B\left(x^{\prime}\right)+\nu \varepsilon M \frac{\partial w^{-}}{\partial x_{3}}\left(x^{\prime}, l_{3}\right), x^{\prime} \in S
$$

then we deduce that

$$
\nu U_{\varepsilon}\left(x^{\prime}, I_{3}\right)-\varepsilon M \sigma\left(U_{\varepsilon}, P_{\varepsilon}\right) n\left(x^{\prime}, I_{3}\right)=\nu \varepsilon^{2} M \frac{\partial w^{-}}{\partial x_{3}}\left(x^{\prime}, I_{3}\right), x^{\prime} \in S .
$$

Let \widetilde{M} denote the 2×2-matrix with entries $m_{i j}=\beta_{j}^{i}, 1 \leq i, j \leq 2$ and β^{i} given by (12). Clearly, for any $v=\left(\widetilde{v}, v_{3}\right) \in \mathbb{R}^{3}$, with $\widetilde{v}=\left(v_{1}, v_{2}\right)$, we have $M v=(\widetilde{M} \widetilde{v}, 0)$, then one can rewrite the condition on $\Sigma\left(\left\{x_{3}=l_{3}\right\}\right)$ in the form

$$
\nu \widetilde{U}_{\varepsilon}-\varepsilon \widetilde{M} \frac{\partial \widetilde{U}_{\varepsilon}}{\partial x_{3}}=\nu \varepsilon^{2} \widetilde{M} \frac{\partial \widetilde{w}^{-}}{\partial x_{3}} \quad \text { on } \Sigma, \quad U_{\varepsilon 3}=0 \quad \text { on } \Sigma .
$$

Neglecting the ε^{2}-term in the previous relation we derive the wall law

$$
\nu \widetilde{U}_{\varepsilon}-\varepsilon \widetilde{M} \frac{\partial \widetilde{U}_{\varepsilon}}{\partial x_{3}}=0 \quad \text { on } \Sigma, \quad U_{\varepsilon 3}=0 \quad \text { on } \Sigma
$$

Note also that the previous boundary condition is equivalent to the following one

$$
\nu U_{\varepsilon}-\varepsilon M \frac{\partial U_{\varepsilon}}{\partial x_{3}}=0 \text { on } \Sigma .
$$

Lemma. The matrix \widetilde{M} is symmetric and negative definite.

Consider the system

$$
\left\{\begin{array}{l}
-\nu \Delta U_{\varepsilon}+\nabla P_{\varepsilon}=f \text { in } \Omega^{-} \tag{2}\\
\nabla \cdot U_{\varepsilon}=0 \text { in } \Omega^{-} \\
U_{\varepsilon}-\varepsilon M \frac{\partial U_{\varepsilon}}{\partial x_{3}}=0 \text { on } \Sigma \\
U_{\varepsilon}=0 \text { on } P \\
\int_{\Omega^{-}} P_{\varepsilon}^{-} d x=0
\end{array}\right.
$$

According to the property of the matrix \widetilde{M} one can show the following result. Lemma. Problem (2) has a unique solution $\left.\left(U_{\varepsilon}, P_{\varepsilon}\right) \in H_{\text {per }}^{1}\left(\Omega^{-}\right)\right)^{3} \times L^{2}\left(\Omega^{-}\right)$.

Our second main result is :

Theorem 2. Let $\left(u_{\varepsilon}, p_{\varepsilon}\right)$ be the solution of the original Stokes system and let $\left(U_{\varepsilon}, P_{\varepsilon}\right)$ be the solution of (2). Then, there exists a positive constant C, independent of ε, such that, for any $\gamma>0$ and ε small enough,

$$
\left\{\begin{array}{l}
\left\|u_{\varepsilon}-U_{\varepsilon}-\varepsilon \xi_{\varepsilon}\right\|_{\left(H^{1}\left(\Omega^{-}\right)\right)^{3}} \leq C \varepsilon^{\frac{3}{2}-\gamma} \\
\left\|p_{\varepsilon}-P_{\varepsilon}-\left(\theta_{\varepsilon}^{-}-\frac{1}{\left|\Omega^{-}\right|} \int_{\Omega^{-}} \theta_{\varepsilon}^{-} d x\right)\right\|_{L^{2}\left(\Omega^{-}\right)} \leq C \varepsilon^{\frac{3}{2}-\gamma}
\end{array}\right.
$$

Sketch of the proof of Theorem 2.
Let $\left(\varphi_{\varepsilon}, \mu_{\varepsilon}\right)$ be defined by

$$
\left\{\begin{array}{l}
\varphi_{\varepsilon}=u^{-}+\varepsilon w^{-}-U_{\varepsilon} \text { in } \Omega^{-}, \\
\pi_{\varepsilon}=p^{-}+\varepsilon q^{-}-P_{\varepsilon} \text { in } \Omega^{-} .
\end{array}\right.
$$

We easily verify that $\left(\varphi_{\varepsilon}, \pi_{\varepsilon}\right) \in\left(H_{\text {per }}^{1}\left(\Omega^{-}\right)\right)^{3} \times L^{2}\left(\Omega^{-}\right)$and satisfies

$$
\left\{\begin{array}{l}
-\nu \Delta \varphi_{\varepsilon}+\nabla \pi_{\varepsilon}=0 \text { in } \Omega^{-}, \\
\nabla \cdot \varphi_{\varepsilon}=0 \text { in } \Omega^{-}, \\
\widetilde{\varphi_{\varepsilon}}-\varepsilon \widetilde{M} \frac{\partial \bar{\varphi}_{\varepsilon}}{\partial x_{3}}=-\varepsilon^{2} \widetilde{M} \frac{\partial \widetilde{w^{-}}}{\partial x_{3}} \text { on } \Sigma, \\
\varphi_{\varepsilon 3}=0 \text { on } \Sigma \\
\varphi_{\varepsilon}=0 \text { on } P, \\
\int_{\Omega^{-}} \pi_{\varepsilon} d x=0 .
\end{array}\right.
$$

The variational formulation of this problem reads : Find $\varphi_{\varepsilon} \in W\left(\Omega^{-}\right)$such that
$2 \nu \int_{\Omega^{-}} e\left(\varphi_{\varepsilon}\right): e(\varphi) d x+\frac{\nu}{\varepsilon} \int_{\Sigma}\left(N \widetilde{\varphi_{\varepsilon}}\right) \cdot \widetilde{\varphi} d s=\nu \varepsilon \int_{\Sigma} \frac{\partial \widetilde{W^{-}}}{\partial x_{3}} \cdot \widetilde{\varphi} d s, \quad \forall \varphi \in W\left(\Omega^{-}\right)$.
Here
$W\left(\Omega^{-}\right)=\left\{\varphi \in\left(H_{\text {per }}^{1}\left(\Omega^{-}\right)\right)^{3}: \nabla \cdot \varphi=0\right.$ in $\Omega^{-}, \varphi=0$ on $P, \varphi_{3}=0$ on $\left.\Sigma\right\}$.

Taking $\varphi=\varphi_{\varepsilon}$ in the previous variational formulation, using the fact that the matrix N is positive definite, we show that there exists a positive constant C such that

$$
\frac{C}{\varepsilon} \int_{\Sigma}\left|\widetilde{\varphi_{\varepsilon}}\right|^{2} d s \leq \frac{\nu}{\varepsilon} \int_{\Sigma}\left(N \widetilde{\varphi_{\varepsilon}}\right) \cdot \widetilde{\varphi}_{\varepsilon} d s \leq C \varepsilon\left\|\widetilde{\varphi_{\varepsilon}}\right\|_{\left(L^{2}(\Sigma)\right)^{3}}
$$

therefore

$$
\left\|\widetilde{\varphi}_{\varepsilon}\right\|_{\left(L^{2}(\Sigma)\right)^{3}} \leq C \varepsilon^{2}
$$

Then, using the Korn, we deduce that

$$
\left\|\varphi_{\varepsilon}\right\|_{\left(H^{1}\left(\Omega^{-}\right)\right)^{3}} \leq C \varepsilon^{3 / 2}
$$

Since $\int_{\Omega^{-}} \pi_{\varepsilon} d x=0$, there exists $\rho_{\varepsilon} \in\left(H_{0}^{1}\left(\Omega^{-}\right)\right)^{3}$ such that $\nabla \cdot \rho_{\varepsilon}=\pi_{\varepsilon}$ in Ω^{-} and $\left\|\rho_{\varepsilon}\right\|_{\left(H_{0}^{1}\left(\Omega^{-}\right)\right)^{3}} \leq C\left\|\pi_{\varepsilon}\right\|_{L^{2}\left(\Omega^{-}\right)}$. Then, considering the equation satisfied by ($\varphi_{\varepsilon}, \pi_{\varepsilon}$) we deduce that

$$
\left\|\pi_{\varepsilon}\right\|_{L^{2}\left(\Omega^{-}\right)} \leq C \varepsilon^{3 / 2}
$$

Now, writing $\tau_{\varepsilon}^{0}=u_{\varepsilon}-u^{-}-\varepsilon w^{-}-\varepsilon \xi_{\varepsilon}^{-}$and $\mu_{\varepsilon}^{0}=p_{\varepsilon}-p^{-}-\varepsilon q^{-}-\left(\theta_{\varepsilon}^{-}-d_{\varepsilon}\right)$, where $d_{\varepsilon}=\frac{1}{\left|\Omega^{-}\right| \varepsilon} \int_{\Omega^{-}} \theta_{\varepsilon}^{-} d x$, we have

$$
\begin{aligned}
& u_{\varepsilon}-U_{\varepsilon}-\varepsilon \xi_{\varepsilon}^{-}=\tau_{\varepsilon}^{0}+\varphi_{\varepsilon} \\
& p_{\varepsilon}-P_{\varepsilon}-\left(\theta_{\varepsilon}^{-}-d_{\varepsilon}\right)=\mu_{\varepsilon}^{0}+\pi_{\varepsilon}
\end{aligned}
$$

and estimates in Theorem 2 follow from that in Theorem 1.
Sketch of the proof of Theorem 1.
We introduce the system

$$
\left\{\begin{array}{l}
-\nu \Delta w_{\varepsilon}^{+}+\nabla q_{\varepsilon}^{+}=0 \text { in } \Omega_{\varepsilon}^{+}, \\
-\nu \Delta w_{\varepsilon}^{-}+\nabla q_{\varepsilon}^{-}=0 \text { in } \Omega^{-}, \\
\nabla \cdot w_{\varepsilon}^{+}=-\nabla \cdot \xi_{\varepsilon}^{+} \text {in } \Omega_{\varepsilon}^{+}, \\
\nabla \cdot w_{\varepsilon}^{-}=-\nabla \cdot \xi_{\varepsilon}^{-} \text {in } \Omega^{-}, \\
w_{\varepsilon}^{+}=-\xi_{\varepsilon}^{+} \text {on } R_{\varepsilon} \backslash \Sigma, \\
w_{\varepsilon}^{-}=B \text { on } R_{\varepsilon} \cap \Sigma, \\
w_{\varepsilon}^{-}=-\xi_{\varepsilon}^{-} \text {on } P, \\
w_{\varepsilon}^{+}=w_{\varepsilon}^{-}-B \text { on } \Sigma \backslash R_{\varepsilon}, \\
\sigma\left(w_{\varepsilon}^{+}, q_{\varepsilon}^{+}\right) n=\sigma\left(w_{\varepsilon}^{-}, q_{\varepsilon}^{-}\right) n-\frac{1}{\varepsilon} \sigma\left(0, p^{-}\right) n \quad \text { on } \Sigma \backslash R_{\varepsilon},
\end{array}\right.
$$

where $B\left(x^{\prime}\right)=\sum_{i=1,2} \frac{\partial u_{i}^{-}}{\partial x_{3}}\left(x^{\prime}, l_{3}\right) \beta^{i}, x^{\prime} \in S$ and $n=(0,0,1)$.

Let τ_{ε} and μ_{ε} be defined by

$$
\begin{aligned}
& \tau_{\varepsilon}=\left\{\begin{array}{l}
\tau_{\varepsilon}^{+}=u_{\varepsilon}-\varepsilon w_{\varepsilon}^{+}-\varepsilon \xi_{\varepsilon}^{+} \quad \text { in } \Omega_{\varepsilon}^{+} \\
\tau_{\varepsilon}^{-}=u_{\varepsilon}-u^{-}-\varepsilon w_{\varepsilon}^{-}-\varepsilon \xi_{\varepsilon}^{-} \quad \text { in } \Omega^{-}
\end{array}\right. \\
& \mu_{\varepsilon}=\left\{\begin{array}{l}
\mu_{\varepsilon}^{+}=p_{\varepsilon}-\varepsilon \boldsymbol{q}_{\varepsilon}^{+}-\theta_{\varepsilon}^{+} \quad \text { in } \Omega_{\varepsilon}^{+} \\
\mu_{\varepsilon}^{-}=p_{\varepsilon}-p^{-}-\varepsilon q_{\varepsilon}^{-}-\theta_{\varepsilon}^{-} \quad \text { in } \Omega^{-}
\end{array}\right.
\end{aligned}
$$

We impose

$$
\int_{\Omega^{-}} q_{\varepsilon}^{-}(x) d x=-\frac{1}{\varepsilon} \int_{\Omega^{-}} \theta_{\varepsilon}^{-}(x) d x
$$

so that $\int_{\Omega^{-}} \mu_{\varepsilon}^{-}(x) d x=0$.
The proof of Theorem 1 consists in three steps
Step 1 :: Estimate of τ_{ε} and μ_{ε}
Proposition. There exists a positive constant C, independent of ε, such that, for any $\gamma>0$ and ε small enough,

$$
\left\|\tau_{\varepsilon}\right\|_{\left(H^{1}\left(\Omega_{\varepsilon}\right)\right)^{3}}+\left\|\mu_{\varepsilon}\right\|_{L^{2}\left(\Omega^{-}\right)} \leq C \varepsilon^{\frac{3}{2}-\gamma}
$$

We prove this result by writing the Stokes system verified by $\left(\tau_{\varepsilon}, \mu_{\varepsilon}\right)$ in the domain Ω_{ε} (without interface conditions).

Then we note that

$$
\begin{gathered}
u_{\varepsilon}-u-\varepsilon w-\varepsilon \xi_{\varepsilon}=\tau_{\varepsilon}-\varepsilon\left(w_{\varepsilon}-w\right) \\
p_{\varepsilon}-p^{-}-\varepsilon q^{-}-\left(\theta_{\varepsilon}^{-}-d_{\varepsilon}\right)=\mu_{\varepsilon}-\varepsilon\left(q_{\varepsilon}-q+\frac{d_{\varepsilon}}{\varepsilon}\right)
\end{gathered}
$$

where $d_{\varepsilon}=\frac{1}{\left|\Omega^{-}\right|} \int_{\Omega^{-}} \theta_{\varepsilon}^{-} d x$. Therefore to prove Theorem 1 we have to estimate $\left\|w_{\varepsilon}-w\right\|_{\left(H^{1}\left(\Omega_{\varepsilon}\right)\right)^{3}}$ and $q_{\varepsilon}-q+\frac{d_{\varepsilon}}{\varepsilon}$.

Step 2: Estimate of $\mathbf{w}_{\varepsilon}-\mathbf{w}$

Proposition. There is a positive constant C, independent of ε, such that, for any $\gamma>0$ and ε small enough,

$$
\left\|w_{\varepsilon}-w\right\|_{\left(H^{1}\left(\Omega_{\varepsilon}\right)\right)^{3}} \leq C \varepsilon^{\frac{1}{2}-\gamma}
$$

Step 3 : Estimate of $\mathbf{q}_{\varepsilon}-\mathbf{q}$
Proposition. There is a positive constant C, independent of ε, such that, for any $\gamma>0$ and ε small enough,

$$
\left\|q_{\varepsilon}-q+\frac{d_{\varepsilon}}{\varepsilon}\right\|_{L^{2}\left(\Omega^{-}\right)} \leq C \varepsilon^{\frac{1}{2}-\gamma}
$$

To prove this proposition we consider the decomposition

$$
w_{\varepsilon}-w=V_{\varepsilon}+V_{\varepsilon}^{0}+W_{\varepsilon}, \quad q_{\varepsilon}-q+\frac{d_{\varepsilon}}{\varepsilon}=r_{\varepsilon}+r_{\varepsilon}^{0}+Q_{\varepsilon}
$$

where:

- the pair $\left(V_{\varepsilon}, r_{\varepsilon}\right) \in\left(H_{\text {per }}^{1}\left(\Omega_{\varepsilon}\right)\right)^{3} \times L^{2}\left(\Omega_{\varepsilon}\right)$ is the solution of the system

$$
\left\{\begin{array}{l}
-\nu \Delta V_{\varepsilon}^{+}+\nabla r_{\varepsilon}^{+}=0 \text { in } \Omega_{\varepsilon}^{+}, \\
-\nu \Delta V_{\varepsilon}^{-}+\nabla r_{\varepsilon}^{-}=0 \text { in } \Omega^{-}, \\
\nabla \cdot V_{\varepsilon}=0 \text { in } \Omega_{\varepsilon}, \\
V_{\varepsilon}=0 \text { on } P \cup R_{\varepsilon}, \\
\sigma\left(V_{\varepsilon}^{+}, r_{\varepsilon}^{+}\right) n=\sigma\left(V_{\varepsilon}^{-}, r_{\varepsilon}^{-}\right) n+\sigma\left(w^{-}, q^{-}\right) n \quad \text { on } \Sigma \backslash R_{\varepsilon}, \\
\int_{\Omega^{-}} r_{\varepsilon}^{-}(x) d x=0 ;
\end{array}\right.
$$

- the pair $\left(V_{\varepsilon}^{0}, r_{\varepsilon}^{0}\right) \in\left(H_{\text {per }}^{1}\left(\Omega_{\varepsilon}\right)\right)^{3} \times L^{2}\left(\Omega_{\varepsilon}\right)$ is the solution of the system

$$
\left\{\begin{array}{l}
-\nu \Delta V_{\varepsilon}^{0,+}+\nabla r_{\varepsilon}^{0,+}=0 \quad \text { in } \Omega_{\varepsilon}^{+}, \\
-\nu \Delta V_{\varepsilon}^{0,-}+\nabla r_{\varepsilon}^{0,-}=0 \quad \text { in } \Omega^{-}, \\
\nabla \cdot V_{\varepsilon}^{0}=0 \text { in } \Omega_{\varepsilon}, \\
V_{\varepsilon}^{0}=0 \text { on } P \cup R_{\varepsilon}, \\
\sigma\left(V_{\varepsilon}^{0,+}, r_{\varepsilon}^{0,+}\right) n=\sigma\left(V_{\varepsilon}^{0,-}, r_{\varepsilon}^{0,-}\right) n-\frac{1}{\varepsilon} \sigma\left(0, p^{-}\right) n \quad \text { on } \Sigma \backslash R_{\varepsilon}, \\
\int_{\Omega^{-}} r_{\varepsilon}^{0,-}(x) d x=0 ;
\end{array}\right.
$$

- the pair $\left(W_{\varepsilon}, Q_{\varepsilon}\right) \in\left(H_{\text {per }}^{1}\left(\Omega_{\varepsilon}\right)\right)^{3} \times L^{2}\left(\Omega_{\varepsilon}\right)$ is the solution of the system

$$
\left\{\begin{array}{l}
-\nu \Delta W_{\varepsilon}+\nabla Q_{\varepsilon}=0 \text { in } \Omega_{\varepsilon}, \\
\nabla \cdot W_{\varepsilon}=-\nabla \cdot \xi_{\varepsilon} \text { in } \Omega_{\varepsilon}, \\
W_{\varepsilon}^{+}=-\xi_{\varepsilon}^{+} \text {on } R_{\varepsilon} \mid \Sigma, \\
W_{\varepsilon}^{-}=-\xi_{\varepsilon}^{-} \text {on } P, \\
W_{\varepsilon}^{-}=0 \text { on } R_{\varepsilon} \cap \Sigma, \\
\int_{\Omega^{-}}^{-} Q_{\varepsilon}^{-}(x) d x=0 .
\end{array}\right.
$$

We show that

$$
\begin{gathered}
\left\|V_{\varepsilon}\right\|_{\left(H^{1}\left(\Omega_{\varepsilon}\right)\right)^{3}}+\left\|V_{\varepsilon}^{0}\right\|_{\left(H^{1}\left(\Omega_{\varepsilon}\right)\right)^{3}} \leq C \sqrt{\varepsilon}, \\
\left\|W_{\varepsilon}\right\|_{\left(H^{1}\left(\Omega_{\varepsilon}\right)\right)^{3}} \leq C \varepsilon^{\frac{1}{2}-\gamma},
\end{gathered}
$$

then, applying Bogovski's theorem and using the previous inequalities we prove that

$$
\left\|q_{\varepsilon}-q^{-}+\frac{d_{\varepsilon}}{\varepsilon}\right\|_{L^{2}\left(\Omega^{-}\right)} \leq C \varepsilon^{\frac{1}{2}-\gamma} .
$$

This completes the proof of Theorem 1.

