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Université Clermont-Ferrand 2 et CNRS, France

A joint work with
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We study the asymptotic behaviour of the solution of Stokes equations in a
3-dimensional domain with highly oscillating boundary.

Let S = (0, l1)× (0, l2), S̃ = (a1, b1)× (a2, b2), with 0 < ai < bi < li (i = 1, 2)

so that S̃ ⊂ S .
Let ηε be the εS-periodic function defined on εS by

ηε
(
x ′
)

=

{
l3 if x ′ ∈ ε

(
S\S̃

)
,

l ′3 if x ′ ∈ εS̃ ,

with l3 < l ′3, x ′ = (x1, x2), and ε is a small positive parameter. Let

Ωε =
{
x = (x ′, x3) ∈ R3 : x ′ ∈ S , b(x ′) < x3 < ηε(x ′)

}
where b is a smooth function on R2, S-periodic and such that b(x ′) < l3 for
every x ′ ∈ R2. We assume that 1/ε ∈ N.
The domain Ωε is bounded at the bottom by the smooth wall

P =
{
x = (x ′, x3) ∈ R3 : x ′ ∈ S , x3 = b(x ′)

}
and at the top by the rough wall

Rε = ∂Ωε \ (P ∪ {(x ′, x3) ∈ R3 : x ′ ∈ ∂S , b(x ′) < x3 < l3}).
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The velocity uε = (uε1, uε2, uε3) and the pressure pε of the fluid satisfy
−ν∆uε +∇pε = f in Ωε,

∇ · uε = 0 in Ωε,

uε = 0 on P ∪ Rε,

(uε, pε) S-periodic (with respect to x ′) ,

(1)

where the source term f belongs to
(
L2 (Ω)

)3
, with

Ω = {(x ′, x3) ∈ R3 : x ′ ∈ S , b(x ′) < x3 < l ′3},

representing the ”limit domain”, as ε tends to zero.

Our aim is to study the asymptotic behavior, as ε goes to 0, of the solution
(uε, pε) of (1) satisfying

∫
Ω−pε dx = 0, where

Ω− =
{

(x ′, x3) ∈ R3 : x ′ ∈ S , b(x ′) < x3 < l3
}
.

• Using boundary layer correctors, we construct an asymptotic approximation
of the solution (uε, pε) of (1) in Ωε.

• We derive an effective boundary condition of Navier’s type, called wall law,
for the Stokes system (1)
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A convergence result

We assume that the function b is Lipschitz-continuous. Denote

Ω+
ε = {(x ′, x3) ∈ Ωε : l3 < x3 < l ′3}, Σ = S × {l3}.

For each m ≥ 0, we introduce the space

Hm
per(Ωε) = {v ∈ H1(A) for any bounded open set A ⊂ Oε,

v(x + (l1, 0, 0)) = v(x + (0, l2, 0)) = v(x) for a.e. x ∈ Oε}

where Oε =
{
x = (x ′, x3) ∈ R3 : x ′ ∈ R2, b(x ′) < x3 < ηε(x ′)

}
.

Let (uε, pε) denotes the unique pair in (H1
per(Ωε))3 × L2(Ωε) satisfying

−ν∆uε +∇pε = f in Ωε,
∇ · uε = 0 in Ωε,
uε = 0 on P ∪ Rε,∫

Ω−
pε dx = 0,

where f ∈ (L2(Ω))3.



Let (u−, p−) ∈ (H1
per(Ω−))3 × L2(Ω−) the unique solution of

−ν∆u− +∇p− = f − in Ω−,
∇ · u− = 0 in Ω−,
u− = 0 on Σ ∪ P,∫

Ω−
p− dx = 0,

where f − = f|Ω− , then set

u =

{
0 in Ω+,
u− in Ω−.

Using classical variational techniques and Bogovski’s theorem one can show the
following convergence result.

Proposition. Let ũε denote the zero-extension to Ω of uε. Then, as ε→ 0.

ũε → u strongly in (H1(Ω))3,

pε|Ω− → p− strongly in L2(Ω−).



Decay estimates

To construct an asymptotic approximation of the solution (uε, pε) we introduce
the solution of a Stokes problem in an infinite vertical domain of R3.
Let Λ+ = S̃ × (0,+∞), Λ− = S × (−∞, 0) and Γ = S̃ × {0}

y1

y3

Λ
+

Λ
−

Γ

a1 b1 l10

Figure 1: Vertical section of the domain Λ
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For i = 1, 2, we consider the pairs (Ψi,+,Πi,+) and (Ψi,−,Πi,−) satisfying{
Ψi,+ ∈ (H1(Λ+))3, Πi,+ ∈ L2

loc(Λ+),
Ψi,− ∈ (H1

loc, per(Λ−))3, ∇Ψi,− ∈ (L2(Λ−))9, Πi,− ∈ L2
loc(Λ−),

−ν∆Ψi,± +∇Πi,± = 0 in Λ±,
∇ ·Ψi,± = 0 in Λ±,
Ψi,+ = 0 on ∂Λ+\Γ,
Ψi,− = 0 on (S × {0})\Γ,
Ψi,+ = Ψi,− on Γ,
σ(Ψi,+,Πi,+)n = σ(Ψi,−,Πi,−)n + νe i on Γ,∫

Λ−
Πi,− dx = 0,

where

H1
loc, per(Λ−) =

{
v ∈ H1(Λ′) for any bounded open set Λ′ ⊂ R2 × (−∞, 0) :

v(x + (l1, 0, 0)) = v(x + (0, l2, 0)) = v(x) for a.e. x ∈ R2 × (−∞, 0)
}
,



e1 = (1, 0, 0), e2 = (0, 1, 0), σ(Ψ,Π) = −Π I + 2ν e(Ψ), I denoting the 3× 3
identity matrix and e(Ψ) = 1

2
(∇Ψ + (∇Ψ)T), and n is the unit normal vector

on Γ external to Λ−, i.e. n = (0, 0, 1).

We denote by β i the mean of Ψi,− over a cross section of Λ− :

β i (δ) =
1

|S |

∫
S

Ψi,−(y ′,−δ) dy ′, δ ∈ (0,+∞),

where y ′ = (y1, y2).

Proposition. For each i = 1, 2, there is a unique solution (Ψi ,Πi ) of the above
Stokes system. Moreover,

(i) the vector β i is independent of δ, and β i
3 = 0 ;

(ii) for any α ∈ N3 and δ ∈ (0,+∞), there exist two positive constants c and
Cα,δ such that∣∣∣∂αΨi,+ (y ′, y3

)∣∣∣+ ∣∣∣∂αΠi,+ (y ′, y3

)∣∣∣ ≤ Cα,δ e
−cy3 , ∀(y ′, y3) ∈ S̃ × (δ,+∞),∣∣∣∂α(Ψi,− − β i )(y ′, y3)

∣∣∣+∣∣∣∂αΠi,−(y ′, y3)
∣∣∣ ≤ Cα,δ e

cy3 , ∀(y ′, y3) ∈ S×(−∞,−δ).



Asymptotic expansion.

In what follows we assume that

b ∈ H6
per(S), f|Ω− ∈ (H4

per(Ω−))3, f|Ω+ = 0.

Let (w−, q−) ∈ (H1
per(Ω−))3 × L2(Ω−) be the unique solution of

−ν∆w− +∇q− = 0 in Ω−,
∇ · w− = 0 in Ω−,
w− = B on Σ,
w− = 0 on P,∫

Ω−
q− dx = 0,

where

B(x ′) =
∑
i=1,2

∂u−i
∂x3

(x ′, l3)β i , x ′ ∈ S ,

with β i denotes the mean of Ψi,− over a cross section of Λ−.

Let us now set

w =

{
0 in Ω+,

w− in Ω−,
q =

{
0 in Ω+,

q− in Ω−,



ξε(x) =


ξ+
ε (x) =

∑
i=1,2

∂u−i
∂x3

(x ′, l3) Ψi,+
(

x′

ε
, x3−l3

ε

)
in Ω+

ε ,

ξ−ε (x) =
∑
i=1,2

∂u−i
∂x3

(x ′, l3) Ψi,−
(

x′

ε
, x3−l3

ε

)
− B(x ′) in Ω−,

θε(x) =


θ+
ε (x) =

∑
i=1,2

∂u−i
∂x3

(x ′, l3) Πi,+
(

x′

ε
, x3−l3

ε

)
in Ω+

ε ,

θ−ε (x) =
∑
i=1,2

∂u−i
∂x3

(x ′, l3) Πi,−
(

x′

ε
, x3−l3

ε

)
in Ω−,

where, for i = 1, 2, (Ψi ,Πi ) is the unique solution of the Stokes system in the
domain Λ.

Our first main result is :

Theorem 1. There exists a positive constant C , independent of ε, such that,
for any γ > 0 and ε small enough,

‖uε − u − εw − εξε‖(H1(Ωε))3 ≤ Cε
3
2
−γ ,∥∥∥pε − p− − εq− −

(
θ−ε − 1

|Ω−|
∫

Ω− θ
−
ε dx

)∥∥∥
L2(Ω−)

≤ Cε
3
2
−γ .



Wall law.

Denote { Uε = u− + εw− + εξ−ε in Ω−,

Pε = p− + εq− + θ−ε in Ω−.

Clearly, (Uε,Pε) ∈ (H1
per(Ω−))3 × L2

per(Ω−) and taking the trace of Uε on
{x3 = l3} we have

Uε(x ′, l3) = ε
∑
i=1,2

∂u−i
∂x3

(x ′, l3)Ψi,−(y ′, 0), x ′ ∈ S , y ′ =
x ′

ε
.

The fact that u−3 = w−3 = 0 on {x3 = l3} provides that
σ(u−, p−)n (x ′, l3) =

(
ν
∂u−1
∂x3

(x ′, l3), ν
∂u−2
∂x3

(x ′, l3),−p−(x ′, l3)

)
, x ′ ∈ S ,

σ(w−, q−)n (x ′, l3) =

(
ν
∂w−1
∂x3

(x ′, l3), ν
∂w−2
∂x3

(x ′, l3),−q−(x ′, l3)

)
, x ′ ∈ S .



An easy computation gives

σ(εξ−ε , θ
−
ε )n (x ′, l3) =

∑
i=1,2

∂u−i
∂x3

(x ′, l3)σ(Ψi,−,Πi,−)n (y ′, 0)

+ εν

(∑
i=1,2

∂

∂x1

(
∂u−i
∂x3

(x ′, l3)

)
Ψi,−

3 (y ′, 0),
∑
i=1,2

∂

∂x2

(
∂u−i
∂x3

(x ′, l3)

)
Ψi,−

3 (y ′, 0), 0

)

for x ′ ∈ S , y ′ = x′

ε
.

We now define the mean with respect to y ′ ∈ S of a function U = U(x ′, y ′) by

〈U〉(x ′) =
1

|S |

∫
S

U(x ′, y ′) dy ′, x ′ ∈ S .

Separating the slow and fast variables, taking the mean with respect to y ′ ∈ S
of Uε and denoting Uε = 〈Uε〉 we obtain

Uε(x ′, l3) = ε
∑
i=1,2

∂u−i
∂x3

(x ′, l3) 〈Ψi,−〉(0) = εB(x ′), x ′ ∈ S .



Similarly, separating the slow and fast variables, and taking the mean with
respect to y ′ ∈ S , according to the S-periodicity of Ψi,− and the fact that
β i

3 = 0 we have 〈σ(Ψi,−,Πi,−)n(0)〉 =
(
0, 0,−〈Πi,−〉(0)

)
and then

〈σ(εξ−ε , θ
−
ε )n〉 (x ′, l3) =

(
0, 0,−〈θ−ε 〉(x ′, l3)

)
, x ′ ∈ S .

Then, denoting Pε = 〈Pε〉, we deduce that

σ(Uε,Pε)n(x ′, l3) =

(
ν
∂u−1
∂x3

(x ′, l3), ν
∂u−2
∂x3

(x ′, l3),−p−(x ′, l3)− 〈θ−ε 〉(x ′, l3)

)
+ ε

(
ν
∂w−1
∂x3

(x ′, l3), ν
∂w−2
∂x3

(x ′, l3),−q−(x ′, l3)

)
, x ′ ∈ S .

Let M denote the 3× 3-matrix with column vectors β1, β2, 0. Multiplying the
previous equality by M yields

Mσ(Uε,Pε)n(x ′, l3) = νB(x ′) + νεM
∂w−

∂x3
(x ′, l3), x ′ ∈ S ,

then we deduce that

νUε(x ′, l3)− εMσ(Uε,Pε)n(x ′, l3) = νε2M
∂w−

∂x3
(x ′, l3), x ′ ∈ S .



Let M̃ denote the 2× 2-matrix with entries mij = β i
j , 1 ≤ i , j ≤ 2 and β i given

by (12). Clearly, for any v = (ṽ , v3) ∈ R3, with ṽ = (v1, v2), we have

Mv =
(
M̃ṽ , 0

)
, then one can rewrite the condition on Σ ({x3 = l3}) in the form

νŨε − εM̃
∂Ũε
∂x3

= νε2M̃
∂w̃−

∂x3
on Σ, Uε3 = 0 on Σ.

Neglecting the ε2-term in the previous relation we derive the wall law

νŨε − εM̃
∂Ũε
∂x3

= 0 on Σ, Uε3 = 0 on Σ.

Note also that the previous boundary condition is equivalent to the following
one

νUε − εM
∂Uε
∂x3

= 0 on Σ.

Lemma. The matrix M̃ is symmetric and negative definite.



Consider the system 

−ν∆Uε +∇Pε = f in Ω−,
∇ · Uε = 0 in Ω−,
Uε − εM ∂Uε

∂x3
= 0 on Σ,

Uε = 0 on P,∫
Ω−

P−ε dx = 0.

(2)

According to the property of the matrix M̃ one can show the following result.

Lemma. Problem (2) has a unique solution (Uε,Pε) ∈ H1
per(Ω−))3 × L2(Ω−).

Our second main result is :

Theorem 2. Let (uε, pε) be the solution of the original Stokes system and let
(Uε,Pε) be the solution of (2). Then, there exists a positive constant C ,
independent of ε, such that, for any γ > 0 and ε small enough,

‖uε − Uε − εξε‖(H1(Ω−))3 ≤ Cε
3
2
−γ ,∥∥∥pε − Pε −

(
θ−ε − 1

|Ω−|
∫

Ω− θ
−
ε dx

)∥∥∥
L2(Ω−)

≤ Cε
3
2
−γ .



Sketch of the proof of Theorem 2.
Let (ϕε, µε) be defined by{

ϕε = u− + εw− − Uε in Ω−,
πε = p− + εq− − Pε in Ω−.

We easily verify that (ϕε, πε) ∈ (H1
per(Ω−))3 × L2(Ω−) and satisfies

−ν∆ϕε +∇πε = 0 in Ω−,
∇ · ϕε = 0 in Ω−,

ϕ̃ε − εM̃ ∂ϕ̃ε
∂x3

= −ε2M̃ ∂w̃−
∂x3

on Σ,

ϕε3 = 0 on Σ
ϕε = 0 on P,∫

Ω−
πε dx = 0.

The variational formulation of this problem reads : Find ϕε ∈W (Ω−) such that

2ν

∫
Ω−

e(ϕε) : e(ϕ) dx +
ν

ε

∫
Σ

(
Nϕ̃ε

)
·ϕ̃ ds = νε

∫
Σ

∂w̃−

∂x3
·ϕ̃ ds, ∀ϕ ∈W (Ω−).

Here

W (Ω−) =
{
ϕ ∈ (H1

per(Ω−))3 : ∇ · ϕ = 0 in Ω−, ϕ = 0 on P, ϕ3 = 0 on Σ
}
.



Taking ϕ = ϕε in the previous variational formulation, using the fact that the
matrix N is positive definite, we show that there exists a positive constant C
such that

C

ε

∫
Σ

|ϕ̃ε|2 ds ≤
ν

ε

∫
Σ

(
Nϕ̃ε

)
· ϕ̃ε ds ≤ Cε‖ϕ̃ε‖(L2(Σ))3

therefore
‖ϕ̃ε‖(L2(Σ))3 ≤ Cε2.

Then, using the Korn, we deduce that

‖ϕε‖(H1(Ω−))3 ≤ Cε3/2.

Since
∫

Ω− πε dx = 0, there exists ρε ∈ (H1
0 (Ω−))3 such that ∇ · ρε = πε in Ω−

and ‖ρε‖(H1
0 (Ω−))3 ≤ C‖πε‖L2(Ω−). Then, considering the equation satisfied by

(ϕε, πε) we deduce that

‖πε‖L2(Ω−) ≤ Cε3/2.



Now, writing τ 0
ε = uε − u− − εw− − εξ−ε and

µ0
ε = pε − p− − εq− − (θ−ε − dε), where dε = 1

|Ω−|ε
∫

Ω− θ
−
ε dx , we have

uε − Uε − εξ−ε = τ 0
ε + ϕε,

pε − Pε − (θ−ε − dε) = µ0
ε + πε,

and estimates in Theorem 2 follow from that in Theorem 1. �

Sketch of the proof of Theorem 1.
We introduce the system

−ν∆w+
ε +∇q+

ε = 0 in Ω+
ε ,

−ν∆w−ε +∇q−ε = 0 in Ω−,
∇ · w+

ε = −∇ · ξ+
ε in Ω+

ε ,
∇ · w−ε = −∇ · ξ−ε in Ω−,
w+
ε = −ξ+

ε on Rε\Σ,
w−ε = B on Rε ∩ Σ,
w−ε = −ξ−ε on P,
w+
ε = w−ε − B on Σ\Rε,

σ(w+
ε , q

+
ε )n = σ(w−ε , q

−
ε )n − 1

ε
σ(0, p−)n on Σ\Rε,

where B(x ′) =
∑

i=1,2

∂u−i
∂x3

(x ′, l3)β i , x ′ ∈ S and n = (0, 0, 1).



Let τε and µε be defined by

τε =

{
τ+
ε = uε − εw+

ε − εξ+
ε in Ω+

ε ,

τ−ε = uε − u− − εw−ε − εξ−ε in Ω−,

µε =

{
µ+
ε = pε − εq+

ε − θ+
ε in Ω+

ε ,

µ−ε = pε − p− − εq−ε − θ−ε in Ω−.

We impose ∫
Ω−

q−ε (x) dx = −1

ε

∫
Ω−
θ−ε (x) dx

so that
∫

Ω− µ
−
ε (x) dx = 0.

The proof of Theorem 1 consists in three steps

Step 1 : : Estimate of τε and µε

Proposition. There exists a positive constant C , independent of ε, such that,
for any γ > 0 and ε small enough,

‖τε‖(H1(Ωε))3 + ‖µε‖L2(Ω−) ≤ Cε
3
2
−γ .

We prove this result by writing the Stokes system verified by (τε, µε) in the
domain Ωε (without interface conditions).



Then we note that

uε − u − εw − εξε = τε − ε(wε − w)

pε − p− − εq− − (θ−ε − dε) = µε − ε(qε − q +
dε
ε

),

where dε = 1
|Ω−|

∫
Ω− θ

−
ε dx . Therefore to prove Theorem 1 we have to estimate

‖wε − w‖(H1(Ωε))3 and qε − q + dε
ε

.

Step 2 : Estimate of wε − w

Proposition. There is a positive constant C , independent of ε, such that, for
any γ > 0 and ε small enough,

‖wε − w‖(H1(Ωε))3 ≤ Cε
1
2
−γ .

Step 3 : Estimate of qε − q

Proposition. There is a positive constant C , independent of ε, such that, for
any γ > 0 and ε small enough,∥∥∥∥qε − q +

dε
ε

∥∥∥∥
L2(Ω−)

≤ Cε
1
2
−γ .



To prove this proposition we consider the decomposition

wε − w = Vε + V 0
ε + Wε, qε − q +

dε
ε

= rε + r 0
ε + Qε.

where :
– the pair (Vε, rε) ∈ (H1

per(Ωε))3 × L2(Ωε) is the solution of the system

−ν∆V+
ε +∇r+

ε = 0 in Ω+
ε ,

−ν∆V−ε +∇r−ε = 0 in Ω−,
∇ · Vε = 0 in Ωε,
Vε = 0 on P ∪ Rε,
σ(V+

ε , r
+
ε )n = σ(V−ε , r

−
ε )n + σ(w−, q−)n on Σ\Rε,∫

Ω− r−ε (x) dx = 0;

– the pair (V 0
ε , r

0
ε ) ∈ (H1

per(Ωε))3 × L2(Ωε) is the solution of the system

−ν∆V 0,+
ε +∇r 0,+

ε = 0 in Ω+
ε ,

−ν∆V 0,−
ε +∇r 0,−

ε = 0 in Ω−,
∇ · V 0

ε = 0 in Ωε,
V 0
ε = 0 on P ∪ Rε,

σ(V 0,+
ε , r 0,+

ε )n = σ(V 0,−
ε , r 0,−

ε )n − 1
ε
σ(0, p−)n on Σ\Rε,∫

Ω− r 0,−
ε (x) dx = 0;



– the pair (Wε,Qε) ∈ (H1
per(Ωε))3 × L2(Ωε) is the solution of the system

−ν∆Wε +∇Qε = 0 in Ωε,
∇ ·Wε = −∇ · ξε in Ωε,
W+
ε = −ξ+

ε on Rε\Σ,
W−ε = −ξ−ε on P,
W−ε = 0 on Rε ∩ Σ,∫

Ω−Q
−
ε (x) dx = 0.

We show that
‖Vε‖(H1(Ωε))3 + ‖V 0

ε ‖(H1(Ωε))3 ≤ C
√
ε,

‖Wε‖(H1(Ωε))3 ≤ Cε
1
2
−γ ,

then, applying Bogovski’s theorem and using the previous inequalities we prove
that ∥∥∥∥qε − q− +

dε
ε

∥∥∥∥
L2(Ω−)

≤ Cε
1
2
−γ .

This completes the proof of Theorem 1. �


